
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2007-06

Distributed algorithms for beamforming in
wirless [sic] sensor networks

Papalexidis, Nikolaos
Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/3397

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

DISTRIBUTED ALGORITHMS FOR BEAMFORMING IN
WIRLESS SENSOR NETWORKS

by

Nikolaos Papalexidis

June 2007

 Thesis Advisor: Murali Tummala
 Thesis Co-Advisor: John C. McEachen
 Thesis Committee Members: Roberto Cristi
 Weilian Su

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
June 2007

3. REPORT TYPE AND DATES COVERED
Engineer’s Thesis

4. TITLE AND SUBTITLE Distributed Algorithms for Beamforming in Wireless
Sensor Networks
6. AUTHOR(S) Nikolaos Papalexidis

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Sensor nodes in a wireless sensor network (WSN) can establish a link with a UAV by using
beamforming techniques to form a random array with position errors. The position errors’ effect in the
array performance is examined using a MATLAB-based simulation model.

In order to spread the processing and communication load among the nodes, two new distributed
algorithms for beamforming in WSN, based on the least squares (LS) approximation of the desired array
response, are proposed. The first is a distributed implementation of the QR decomposition, and the second
is an iterative method for solving the LS problem. Results indicate that the processing load is effectively
shared among the nodes. Especially, in the second approach, the processing load can be lower than that of
the centralized approach, depending on the algorithm’s convergence. For both algorithms, the tradeoff for
the ability to spread the processing load is the increased communication cost, which could cause an overall
increase in the total power consumption in the network. However, the average power per participating
sensor node is still lower than that required by the cluster head in the centralized approach. Consequently,
the network’s susceptibility to failures due to excessive power consumption is greatly reduced.

15. NUMBER OF
PAGES

136

14. SUBJECT TERMS wireless sensor networks, distributed beamforming, distributed QR
decomposition, iterative least squares

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

DISTRIBUTED ALGORITHMS FOR BEAMFORMING IN WIRELESS SENSOR
NETWORKS

Nikolaos Papalexidis

Lieutenant, Hellenic Air Force
B.S., Hellenic Air Force, Athens, 1999

Submitted in partial fulfillment of the
requirements for the degrees of

ELECTRICAL ENGINEER

and

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
June 2007

Author: Nikolaos Papalexidis

Approved by: Murali Tummala
Thesis Advisor

John C. McEachen
Thesis Co-Advisor

Roberto Cristi
Thesis Committee Member

Weilian Su
Thesis Committee Member

Jeffrey B. Knorr
Chairman, Department of Electrical and Computer Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Sensor nodes in a wireless sensor network (WSN) can establish a link with a

UAV by using beamforming techniques to form a random array with position errors. The

position errors’ effect in the array performance is examined using a MATLAB-based

simulation model.

In order to spread the processing and communication load among the nodes, two

new distributed algorithms for beamforming in WSN, based on the least squares (LS)

approximation of the desired array response, are proposed. The first is a distributed

implementation of the QR decomposition, and the second is an iterative method for

solving the LS problem. Results indicate that the processing load is effectively shared

among the nodes. Especially, in the second approach, the processing load can be lower

than that of the centralized approach, depending on the algorithm’s convergence. For

both algorithms, the tradeoff for the ability to spread the processing load is the increased

communication cost, which could cause an overall increase in the total power

consumption in the network. However, the average power per participating sensor node is

still lower than that required by the cluster head in the centralized approach.

Consequently, the network’s susceptibility to failures due to excessive power

consumption is greatly reduced.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. INTRODUCTION TO WIRELESS SENSOR NETWORKS1
B. RELATED WORK IN BEAMFORMING AND WIRELESS

SENSOR NETWORKS...2
C. THESIS OBJECTIVE...4
D. PROPOSED APPROACH TO DISTRIBUTED BEAMFORMING..........4
E. THESIS OUTLINE..5

II. BEAMFORMING IN SENSOR ARRAYS..7
A. UNIFORM LINEAR AND PLANAR ARRAYS ..7

1. One-Dimensional Array ..7
2. Two-dimensional (planar) Array..11

B. RANDOM ARRAY: POSITION ERRORS ...15
1. Position and Phase Errors...16
2. Random Array Implementation ...17

C. BEAMFORMER IMPLEMENTATIONS ..20
D. WIRELESS SENSOR NETWORK ARRAYS..22

1. Deployment of Sensor Nodes...22
2. Communication and Computational Cost25

E. SUMMARY ..28

III. CENTRALIZED IMPLEMENTATION OF A BEAMFORMER........................29
A. PHASE MATCH OF THE STEERING VECTOR29
B. BEAMPATTERN APPROXIMATION IN THE LEAST SQUARE

SENSE...31
1. Least Squares Problem Formulation ...32
2. Implementation and Performance Analysis34

C. APPLICATION OF LEAST SQUARES BEAMFORMING
APPROACH TO SENSOR NETWORKS ..38

D. SUMMARY ..41

IV. DISTRIBUTED ALGORITHMS FOR BEAMFORMING...................................43
A. DISTRIBUTED QR FACTORIZATION WITH HOUSEHOLDER

TRANSFORMATIONS ..43
1. Householder Transformations..43
2. QR Decomposition ...45
3. Proposed Algorithm Description..49
4. Computational and Communication Cost Analysis........................55

B. DISTRIBUTED ITERATIVE SCHEME FOR SOLVING THE
LEAST SQUARE PROBLEM ...63
1. Proposed Algorithm...64
2. Computational and Communication Costs68

C. SUMMARY ..78

 viii

V. CONCLUSIONS ..79
A. SIGNIFICANT RESULTS..79
B. FUTURE WORK...80

APPENDIX. MATLAB SOURCE CODE..83

LIST OF REFERENCES..111

INITIAL DISTRIBUTION LIST ...115

 ix

 LIST OF FIGURES

Figure 1. WSN deployed over an area of interest and UAV collecting the desired
information...2

Figure 2. An 1M × linear array of equally spaced isotropic elements.8
Figure 3. Normalized Power Gain (dB) – Beampattern of a 10M = element array

with isotropic elements, fixed spacing / 2λ and
0

0aθ = °10
Figure 4. Signal wavefront arriving from direction 0 0(,)θ φ at a M N× planar array.....13
Figure 5. Normalized Power Gain (dB): 3-D Beampattern of a 10 10× planar array

with isotropic elements, equally spaced by / 2λ and direction of signal
arrival 0 0(30 , 45)θ φ= ° = ° ..14

Figure 6. Normalized Power Gain (dB): Beampattern of a 10 10× planar array with
isotropic elements, equally spaced by / 2λ and direction of signal
arrival 0 0(0 , 45)θ φ= ° = ° . Azimuth angle is fixed at 0 45φ = °15

Figure 7. Ideal and approximately linear arrays with randomly deployed elements
and position errors..18

Figure 8. Beampattern of a 10 1× linear array with position errors, compared to a
10 1× array with equally spaced isotropic elements. Polar angle 0 30θ = ° ,
azimuth angle 0 45φ = ° and mean deviation 30% of / 2λ in both x-y
directions..19

Figure 9. Effect of position errors in a random array. Average sidelobe level (dB)
for the first (red line) and the largest (blue line) sidelobe as a function of
the mean deviation of the actual element positions from the ideal positions
in linear10 1× array with equally spaced isotropic elements...........................20

Figure 10. A 1M × narrow-band beamformer. ...21
Figure 11. A sensor network deployment used for information transfer to a UAV

(After Ref. [34]). ..23
Figure 12. Finding five nodes approximating a 5 1× linear array with equally spaced

elements (After Ref. [24])..25
Figure 13. Mean beampattern of a random 10 1× uniform linear array with position

errors, averaged over 50 simulation runs, compared to a uniform 10 1×
array of equally spaced elements. The AOA is (0 30θ = ° , 0 45φ = °). The
position errors are uniformly distributed between 0 and and 0.4 / 2λ in
both x and y directions. Beamforming is implemented by matching the
steering vector..31

Figure 14. Mean beampattern of a random 10 1× linear array with position errors
(blue) and mean beampattern calculated using the “phase match” (cyan)
and the LS approach (red), averaged over 50 simulation runs, compared to
a uniform 10 1× array (black). The AOA is (0 30θ = ° , 0 45φ = °). The
position errors are uniformly distributed between 0 and and 0.5 / 2λ in
both x and y directions...35

 x

Figure 15. Error metric we of weights as a function of the number of approximation
points m39

Figure 16. Error metric Fe of approximated array responses as a function of the
number of approximation points m ..40

Figure 17. First phase of the algorithm for distributed QR decomposition by the
sensor nodes. Bolded and underlined iH above the nodes denote the
Householder transformations that are already stored in the sensor. Simple

iH denote the just computed and broadcast Householder transformation.52
Figure 18. Last phase of the algorithm to implement distributed back substitution by

the sensor nodes. Bolded and underlined ,i ix w above the nodes denote the
positions and weights that are already stored in the sensor. Simple ,i ix w
denote the broadcast position and just computed weight.................................55

Figure 19. Processing cost of the distributed algorithm as a function of the number of
approximation angles and for 10n = sensors. Multiplying iN by iP gives
the required processing power. ..59

Figure 20. Processing cost of the distributed algorithm as a function of the number of
sensors and for fixed number of approximation angles 20m = .
Multiplying iN by iP gives the required processing power.59

Figure 21. Communication cost of the distributed algorithm as a function of the
number of approximation angles and for a fixed number of sensors
(10n =). Multiplying the number of data elements with tbP b× gives the
required transmission power. ...60

Figure 22. Communication cost of the distributed algorithm as a function of the
number of sensors and for fixed number of approximation angles
(20m =). Multiplying the number of data elements with tbP b× gives the
required transmission power. ...61

Figure 23. Normalized power nP (number of iP) for both distributed and centralized
approaches as a function of the number of approximation angles for a
fixed number of sensors (20n =). tpη is assumed to be 200 and 32b =
bits..62

Figure 24. Normalized power nP (number of iP) for both distributed and centralized
approaches as a function of the number of sensors for a fixed number of
approximation angles (20m =). tpη is assumed to be 200 and 32b =63

Figure 25. Procedure for the distributed iterative solution of the LS problem (After
Ref. [30])..66

Figure 26. Procedure for the proposed distributed iterative solution of the LS problem
in a WSN environment...68

Figure 27. Convergence of the residual norm to the actual residual, indicating that the
algorithm converges to the real solution. After 3 complete iterations (30
local) the residual has converged...69

 xi

Figure 28. Convergence of the norm of the error ()e k between the approximate ()kw
and actual solution w∗ calculated after each complete iteration k ,
indicating that the algorithm converges to the real solution.70

Figure 29. Processing cost of the distributed algorithm as a function of the number of
approximation angles for 10n = sensors and 5k = iterations. Multiplying
the number of instructions by iP gives the required processing power...........72

Figure 30. Processing cost of the distributed algorithm as a function of the number of
sensors for 20m = approximation angles and 5k = iterations.
Multiplying the number of instructions by iP gives the required processing
power..72

Figure 31. Processing cost of the distributed algorithm as a function of the number of
iterations for 10n = sensors and 20m = approximation angles.
Multiplying the number of instructions by iP gives the required processing
power..73

Figure 32. Communication Cost of the distributed algorithm as a function of the
number of sensors for 20m = approximation angles and 5k = iterations.
Multiplying the number of data elements with tbP b× gives the required
transmission power. ...75

Figure 33. Communication cost of the distributed algorithm as a function of the
number of iterations for 10n = sensors and 20m = approximation angles.
Multiplying the number of data elements with tbP b× gives the required
transmission power. ...75

Figure 34. Normalized power nP (number of iP) for both distributed and centralized
approaches as a function of the number of approximation angles for

10n = sensors and 5k = iterations. tpη is assumed to be 200 and 32b =
bits..76

Figure 35. Normalized power nP (number of iP) for both distributed and centralized
approaches as a function of the number of sensors for

20m = approximation points and 5k = iterations. tpη is assumed to be
200 and 32b = bits. ...77

Figure 36. Normalized power nP (number of iP) for both distributed and centralized
approaches as a function of the number iterations for 10n = sensors and

20m = approximation points. tpη is assumed to be 200 and 32b = bits........77

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF TABLES

Table 1. Quantities used for defining the communication and computational cost.26

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

I would like to express my gratitude to Professor Murali Tummala for his support,

guidance and motivation throughout this work. I am grateful for his support in the pursuit

of my interests. It has been a real privilege to work with you.

I would like to thank CDR T. Owens Walker for his valuable contribution

throughout this research.

I also express my great appreciation to Professors John McEachen, Roberto Cristi

and Weilian Su for their assistance and recommendations for improving this work.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

EXECUTIVE SUMMARY

A wireless sensor network (WSN) consists of a large number of microsensors,

each having limited battery lifetime and restricted communication and computing

capabilities. Recent advances in the integrated circuit technology have allowed the

production of lightweight and inexpensive sensor nodes, which have a range of

capabilities, such as sensing, processing and communication. WSNs can have many

applications in both commercial and military environments. A set of sensor nodes, which

can be deployed easily and quickly by an unmanned aerial vehicle (UAV), for example,

can be used for monitoring the battlefield environment, sensing for a wide range of

targets, especially in the case where the area of interest is inaccessible or there is high

risk of human loss.

Once deployed, the sensor nodes can collect the desired information and transmit

it to the UAV. Although a single sensor node cannot transmit its data directly to the UAV

due to the limited range of coverage, several of them can coordinate their transmissions

in order to form an array and thus substantially increase the range of coverage. Since the

sensors are randomly deployed, it is unlikely that they form topologies that permit the

formation of arrays with equally spaced elements. As a result, there are position errors

with respect to an array with equally spaced elements.

A simulation model was developed in the MATLAB environment to analyze the

effect of these position errors on the array performance. The simulations showed that the

sidelobe levels in the array response increase as a function of the error in the element

location. Specifically, as the mean deviation from the ideal position was increased, the

average sidelobe magnitudes also increased. These results are in agreement with the

theoretical analysis of random arrays, found in the literature. The degradation of the array

performance can be largely eliminated using a Least Squares (LS) beamformer, which

computes the weights that best approximate a given desired response. This beamformer

can also efficiently suppress potential interfering signals coming from directions other

than the signal’s.

 xviii

Since reliability and robustness in a sensor network environment are desired, the

processing load must be effectively spread among the sensor nodes. Centralized

approaches assign the entire processing load to a single node whereas in a distributed

approach, the processing tasks are split into smaller processes, which are then allocated to

the participating sensor nodes. Two fully distributed approaches to beamforming in WSN

were presented in this work, and they are both based on the LS approximation of the

desired response. The first is a distributed implementation of the QR decomposition, and

the second is an iterative method of computing the weights in the LS sense.

The performance of the distributed methods was compared to the centralized LS

approach using the processing and communication costs as metrics. The results indicate

that the processing load is effectively shared among the nodes. Especially in the second

method, the processing load is a function of the algorithm’s convergence and can be

lower compared to that of the centralized approach, subject to the speed of convergence.

For both algorithms, the tradeoff for the ability to spread the processing load is the

increased communication cost, which could cause an overall increase in the total power

consumption in the network. This total power, however, is shared among the sensor

nodes; therefore, the average power expended by a participating sensor node in the

distributed implementation is lower than the power required by the cluster head in the

centralized approach. Consequently, the network’s susceptibility to failures due to

excessive power consumption is greatly reduced.

 1

I. INTRODUCTION

A. INTRODUCTION TO WIRELESS SENSOR NETWORKS

A wireless sensor network (WSN) consists of a large number of microsensors,

each having limited battery lifetime and, therefore, restricted communication and

computing capabilities [1], [2] . Recent advances in the integrated circuit technology have

allowed the production of lightweight and inexpensive sensor nodes, which have a range

of capabilities, such as sensing, processing and communication. If they are properly

networked and programmed, these sensor nodes can cooperate in order to perform

complex signal processing functions [3], [4].

The main issue for a WSN is to prolong its operational lifetime as much as

possible, taking into account the sensors’ power consumption requirements. Stringent

energy limitations are also a crucial factor when designing signal processing algorithms

for a WSN [5]. Since such energy restrictions are not taken into account by the signal

processing methods that are already used in applications other than WSNs, existing

techniques should be modified in order to conform to the sensor nodes’ specific

characteristics. Therefore, a major challenge in recent research is the design of signal

processing and networking operations, which optimize the tradeoff between energy

efficiency, simplicity, and overall performance, [3].

Because microsensors are becoming cheaper and more capable, WSNs will find

more applications in both commercial and military environments [1], [2]. Future tactical

operations will involve the deployment of large-scale WSNs in which hundreds or

thousands of disposable sensor nodes will cooperate in order to achieve the mission

objective [3]. These nodes can be deployed easily and quickly by an unmanned aerial

vehicle (UAV), for example, as in Figure 1, which minimizes the risk of human loss.

Then they can be used for monitoring the battlefield environment, sensing for a wide

range of targets, such as biological, radioactive, nuclear, chemical and other materials [1].

Once deployed, the sensor nodes can collect the desired information and disseminate it to

a relay node, such as a UAV. Furthermore, taking into account that the sensing

 2

environment may be harsh and inaccessible for deploying wired networks, there is

obvious need for developing WSNs consisting of small and disposable sensors.

z-axis

y-axis

Flying UAV

Sensor
network

x-axis

Figure 1. WSN deployed over an area of interest and UAV collecting the desired
information.

B. RELATED WORK IN BEAMFORMING AND WIRELESS SENSOR
NETWORKS

After forming an ad hoc network and collecting the required data about the target

of interest, the sensor nodes must establish communication with a UAV, so the acquired

information can be transmitted to the UAV. Although promising, today’s technology still

imposes strict limits on the processing and communication capabilities of the sensor

nodes [6], [7]. Single sensor nodes do not have sufficient power to communicate with an

overflying UAV. Since the UAV may be required to fly at a high altitude due to the

hostile nature of the operative environment, the objective of transmitting the collected

information to the UAV becomes more difficult.

Although a single sensor node cannot transmit its data directly to the UAV due to

the limited batter power, several of them can cooperate in order to function as a large

antenna array and thus substantially increase the transmission range and the data rate.

 3

This process of combining the signal from different antenna elements in order to form a

single output of the sensor array is known as beamforming. It has been proven by many

studies that when an antenna array is properly configured, it can improve the channel

capacity and extend the range of coverage [8], [9]. It can also reduce the multipath fading

and the bit error rate (BER); therefore, it results in more reliable communication [8].

Additionally, beamforming can adaptively steer the antenna beam towards the UAV, thus

aiming the radiated energy in the desired direction [10]. Furthermore, the antenna gain is

proportional to the number of the antenna elements, so the main beam peak power

density can be of several orders of magnitude higher than that of a single sensor [9].

Another useful characteristic of an antenna array is that it can be used in order to perform

spatio-temporal filtering, thus suppressing potential interference signals coming from

directions other than the desired direction [11], [12]. In summary, taking the above

mentioned advantages into account, beamforming in WSNs can meet the objective of

establishing an efficient communication link between a WSN and a UAV.

Several algorithms for beamforming exist in the literature [13], [11], [14] and

many of them are successfully implemented in conventional antenna arrays. [10].

Nevertheless, these algorithms for the computation of the weights for the array elements

cannot be directly implemented in WSNs since there are significant differences between

WSNs and conventional arrays. For instance, the phased arrays used in RADAR are

installed permanently on site [15]; thus, the positions of the antenna elements are fixed.

On the other hand, the sensor nodes in a WSN are usually randomly deployed and their

relative positions are not predetermined. Due to this random deployment, there are

position errors, which cause performance deterioration of the antenna array, compared to

that of an array of equally spaced elements. Moreover, the sensors are prone to frequent

failures due to limited battery life or due to their vulnerability to environmental

conditions. Therefore, the topology of the sensor array can change substantially as new

nodes are added or withdrawn.

Another significant problem is that, in conventional arrays, where power is not a

major issue, the beamforming operation is performed in a single processor [16]. All

necessary information is collected in a central processing node, which is responsible for

 4

solving the beamforming problem. However, in a sensor network environment, this is

neither reliable nor desirable since a single node would be assigned this computationally

demanding task. Additionally, such centralized implementations create a single point of

failure, which in turn creates a serious system vulnerability. If this node fails, then the

beamforming problem has to be solved from the beginning. Thus, the processing load or

consequently the power usage should be effectively distributed across the sensor network

[17]. However, an optimum set of participating sensors in the array has to be defined

since the communication cost for organizing the sensor nodes into an array is prohibitive

after a certain critical number of nodes [18].

C. THESIS OBJECTIVE

The objective of this research is to implement several distributed beamforming

algorithms, and to evaluate their performance. Throughout this work, the operational

scenario of Figure 1 is adopted where several sensor nodes try to communicate with a

UAV. The beamforming process is not performed in a central node (cluster head), but it

is split into smaller processes, which then can be allocated to the sensor nodes. The main

concept is that the processing and communication cost must be shared among the nodes,

so there is no single point of failure and that the energy of the nodes is efficiently used,

thus extending the WSN lifetime. This work is focused on investigating beamforming

schemes that have the same performance as well established centralized approaches yet

offer the advantage of implementation in a distributed fashion thus, increasing the

network’s robustness and overall performance.

D. PROPOSED APPROACH TO DISTRIBUTED BEAMFORMING

Starting from a centralized approach to the Least Squares (LS) solution of the

beamforming problem where the beamformer is designed in such way that the desired

array performance is best approximated, two fully distributed methods are proposed. The

first one is a distributed implementation of the QR decomposition with Householder

 5

transformations and derives the exact solution for the array weight vector. The second

scheme is an iterative method for solving the LS problem, implemented in a distributed

fashion.

In order to examine the proposed techniques, a performance analysis of the

communication and computational costs is developed. These two costs are closely

connected to the power consumption and provide a reliable test for the algorithms’

effectiveness. The resulting array response is examined and compared with the desired

response. The results from these two distributed implementations are encouraging and

indicate that they can provide a realistic solution for the beamforming problem in sensor

networks.

E. THESIS OUTLINE

Chapter II introduces the fundamental concepts of the antenna arrays, including a

description of the uniform linear and planar array. This is followed by an analysis of the

effects of position errors on the performance of the antenna array and a simulation, which

confirms the theoretical results. Beamforming in wireless sensor networks is also

presented along with a specific operational communication scenario which uses a UAV.

Finally, the framework for evaluating the algorithms’ performance based on the factors

that affect power consumption, such as the processing and communication cost, is

developed.

Chapter III presents two centralized beamforming approaches and evaluates their

performance. Their advantages and disadvantages are discussed, and their ability to

mitigate position errors is analyzed using a simulation model developed in a MATLAB

environment.

In Chapter IV, two distributed algorithms for beamforming in wireless sensor

networks are proposed. Their performance is analyzed in terms of efficiently sharing the

processing and communication cost among the nodes, and the simulation results are

compared to those obtained by the centralized approaches.

 6

Chapter V summarizes the significant results of this thesis and provides some

ideas for extending this work in the future.

Finally, the Appendix includes the MATLAB code used in the simulations.

 7

II. BEAMFORMING IN SENSOR ARRAYS

In this chapter, the main concepts of antenna arrays are discussed; specifically, the

uniform linear and planar arrays are presented as well as their array response

(beampattern). The uniform array is followed by an analysis of the random array with

position errors. The effects of the antenna element position errors in the main lobe and

the sidelobe power gain are presented under various assumptions about the statistical

characteristics of the error. Beamformer implementations are described, particularly the

narrowband beamformer. Lastly, there is a discussion about communication and

computational cost in sensor networks as a function of power consumption, which

indicates the need for distributed algorithms in beamforming.

A. UNIFORM LINEAR AND PLANAR ARRAYS

The fundamental concepts of the uniform linear and planar arrays are presented in

this section along with the basic formulation of beamforming which will be used

throughout this work.

1. One-Dimensional Array

In Figure 2, a linear array is depicted with M identical, equally spaced elements.

The spacing between consecutive array elements or sensor nodes in the case of a sensor

array is assumed equal to a half wavelength, i.e., / 2d λ= , where the elements are

isotropic, meaning their beampattern is omni-directional. Furthermore, it is assumed that

the array is located far enough from the signal source (e.g., a UAV); thus, it is considered

to lie in the source’s far field. The array axis is assumed to be in the x-axis. The plane

wave ()s t arrives at the array at an angle aθ with respect to the x-axis (array axis), and

for this reason, the 1thm + element senses the signal earlier than the thm element. If mx is

the distance between the thm node and the reference node, which is located at the origin

of the coordinate system, then the signal ()s t arrives at the thm element earlier by mt

 8

seconds with respect to the reference element. The time difference, which depends on the

arrival angle
0α

θ or Angle of Arrival (AOA), and the element’s distance from the

reference point is given by [19]:

() 0

0

cosm a
m a

x
t

c
θ

θ = (1)

where c is the speed of light.

Figure 2. An 1M × linear array of equally spaced isotropic elements.

Each array element is weighted by a complex weight ,mw for 0,1, , ,m M= K

which multiplies the incoming signal. Adding all the elements’ weighted inputs gives the

spatial response of the array or array factor ()aF θ for any arbitrary angle aθ :

 ()

1
() m a

M
j t

a m
m

F w e ω θθ ∗

=

=∑ (2)

where m aoj t
m mw I e ω θ= and mI and 0m aj te ω θ are the magnitude and the phase of the

 9

complex weights, respectively. Using the wavenumber 2 /β π λ= and the expression for

the time difference mt , the weights can be written as 0cosm aj x
m mw I e β θ= and the array

factor as

 cos

1
() m a

M
j x

a m
m

F w e β θθ ∗

=

=∑ (3)

 The weights mw are carefully selected in order to give the maximum value of the

array response ()aF θ at the desired direction
0aθ and to suppress potential interference

signals arriving from other directions. Indeed at
0a aθ θ= , the array response reaches its

maximum value

 0 0

0

cos cos

1 1
() m a m a

M M
j x j x

a m m
m m

F I e e I Mβ θ β θθ −

= =

= = =∑ ∑ if 1,mI m= ∀ (4)

The set of weights mw form the weight vector

 1 2[...]T
mw w w w=

 while the steering vector or direction vector is defined as

 2 3cos cos cos() [1 ...]a a M aj x j x j x T
ad e e eβ θ β θ β θθ =

and incorporates the location information of the array. Therefore, the array response can

be expressed as

 () ()H
a aF w dθ θ= . (5)

Note that the main concept of beamforming is the use of the weights w in order to point

the array beam towards any desired direction. So, if the desired transmission direction is

0aθ , then the beamformer should set its weights to be

cosm aoj x
m mw I e β θ= . (6)

The beampattern of a 10 1× uniform linear array is shown in Figure 3 where the

normalized power gain G is defined as [9]

 10

2

2

()
()

max ()
a

a
a

a

F
G

F
θ

θ
θ

θ
= (7)

and it is plotted as a function of the direction aθ (in degrees). The array elements are

identical and isotropic, and the spacing has a fixed value of / 2λ and beam pointing

angle
0

0aθ = ° . The maximum sidelobe is equal to -13 dB and the Half Power Beamwidth

(HPBW) is about 10.2° .

-80 -60 -40 -20 0 20 40 60 80-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

θ
α
 (degrees)

N
or

m
al

iz
ed

 P
ow

er
 G

ai
n

(d
B

),

maximum sidelobe =
 -13 dB

Half Power Beamwidth =
10.5 degrees

Figure 3. Normalized Power Gain (dB) – Beampattern of a 10M = element array with
isotropic elements, fixed spacing / 2λ and

0
0aθ = ° .

In general, the sidelobe level decreases with increasing number of elements M

and approaches the value of -13.3 dB. The HPBW in any plane containing the array axis.

is given [9] by

 3 0.866dB Md
λθ =

 11

where Md λ� , i.e., it is valid for long arrays. Therefore the HPBW is a function of

M and decreases as the number of array elements increase.

2. Two-dimensional (planar) Array

The previous discussion of a linear array can be easily expanded to a planar array,

and similar expressions can be derived for the array response and the power gain. In

Figure 4, a uniformly spaced planar array is depicted with M N× identical and isotropic

elements. The spacing between the array elements is assumed equal to half wavelength,

/ 2d λ= , in both directions while it is assumed again that the array is located in the

source’s far field. The plane wave ()s t arrives at the array at polar angle 0θ with respect

to the z-axis and an azimuth angle oφ with respect to the x-axis; thus, the (,)thm n element

receives the signal earlier by mnt seconds compared to the reference element at the origin.

This time difference mnt depends on the angles 0θ , oφ and the element’s position

(,)mn mnx y in the array, and is given by [19]

0 0 0 0
0 0

sin cos sin sin(,) mn mn
mn

x yt
c

θ φ θ φθ φ +
= (8)

Adding all the elements’ weighted inputs gives the array response of the planar

array (,)F θ φ for any arbitrary choice of angles θ and φ :

 (sin cos sin sin)

1 1
(,) mn mn

N M
j x y

mn
n m

F w e β θ φ θ φθ φ +∗

= =

=∑∑ (9)

where

 0 0 0 0(sin cos sin sin)mn mnj x y
mn mnw I e β θ φ θ φ+= (10)

 are the complex weights for each element (,)m n . In matrix form, the above expression

can be written as

 (,) (,)HF w dθ φ θ φ= (11)

where w is an 1MN × weight vector and

 12

12 12

13 13

1 1

(sin cos sin sin)

(sin cos sin sin)

(sin cos sin sin)

(sin cos sin sin)

1

(,)
M M

MN MN

j x y

j x y

j x y

j x y

e
e

d
e

e

β θ φ θ φ

β θ φ θ φ

β θ φ θ φ

β θ φ θ φ

θ φ

+

+

+

+

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

M

M

 (12)

is an 1MN × steering vector.

The weights mnw are again selected in order to give the maximum value of the

array response (,)F θ ϕ in the desired direction 0, 0()θ φ . At 0θ θ= and 0φ φ= , the array

response reaches its maximum value

 0 0(,)F MNθ ϕ = if 1, ,mnI m n= ∀ (13)

where in (13) it is assumed that the excitation of elements (weighting) is uniform.

 13

a) M N× planar array of equally spaced isotropic elements

0φ

b) Measurement of angles for direction of signal arrival 0 0(,)θ φ

Figure 4. Signal wavefront arriving from direction 0 0(,)θ φ at a M N× planar array.

 14

In Figure 5, the three-dimensional beampattern of a 10 10× uniform planar array

is shown, where the normalized power gain G in dB is plotted as a function of the polar

angle θ and the azimuth angle φ . A cross section of this 3-D beampattern is plotted in

Figure 6 where the azimuth angle is constant at 0 45φ = ° (direction of arrival), and the

beampattern varies with the polar angle θ .

Figure 5. Normalized Power Gain (dB): 3-D Beampattern of a 10 10× planar array with

isotropic elements, equally spaced by / 2λ and direction of signal
arrival 0 0(30 , 45)θ φ= ° = ° .

 15

-80 -60 -40 -20 0 20 40 60 80-50

-40

-30

-20

-10

0

θ (degrees)

N
or

m
al

iz
ed

 P
ow

er
 G

ai
n

(d
B

),

maximum sidelobe = -26 dB

Half Power
Beamwidth = 10.3
degrees

Figure 6. Normalized Power Gain (dB): Beampattern of a 10 10× planar array with

isotropic elements, equally spaced by / 2λ and direction of signal
arrival 0 0(0 , 45)θ φ= ° = ° . Azimuth angle is fixed at 0 45φ = ° .

The maximum sidelobe is equal to -26 dB, and the HPBW is about 10.2° . In

general, the sidelobe levels decrease with an increasing number of elements MN and

approaches the value of -26.6 dB. Similarly, the HPBW decreases continuously as the

number of elements increase.

B. RANDOM ARRAY: POSITION ERRORS

In a random deployment of a sensor array where the sensor nodes are dropped

randomly over an area of interest, it would be unrealistic to expect formations of

perfectly spaced planar arrays. An illustrating example comes from the fact that for an

operating frequency cf = 1 GHz, the ideal distance between the sensor nodes is

/ 2 15λ = cm, and even a small displacement of 3 cm yields a position error of 20%.

Therefore, the performance of a sensor array should be studied using the theoretical

 16

analysis of random arrays. In general, the beampattern of a randomly deployed sensor

array will be affected by position errors, amplitude and phase errors, quantization errors

and failures of the nodes, which cause a change in the array topology. Throughout this

work, the main emphasis will be given to the effect of position errors and solutions to this

problem.

1. Position and Phase Errors

There are several references [19], [20], [21], [22] in the literature that deal with

position errors in random arrays. The random antenna elements’ misplacement causes

phase errors and mismatches, which yield degraded performance for the array. In [19], an

analysis of the radiation pattern of a random array with both amplitude and phase errors

is presented. For an M N× two-dimensional array, assuming that there are no amplitude

errors, i.e., the weights mnw have the same magnitude mnI I= , the expected increase s∆ in

the sidelobe level with respect to the main lobe is given by [19]

 ()21 1s e
MN

ϕσ ∆∆ = − (14)

where the phase errors follow a Gaussian distribution with zero mean and variance 2
ϕσ∆ .

For example, in a 5 5× planar array, s∆ is equal to 0.00518 for 20ϕσ∆ = ° and equal to

0.025 for 40ϕσ∆ = ° . Therefore, doubling of the phase error will cause an increase of

almost 6 dB in the sidelobe level with respect to the main lobe. However, it can be seen

from (14) that the effect of phase errors can be mitigated by increasing the number of

array elements in the array. Indeed, s∆ can be decreased by a factor of two if the number

of antenna elements is doubled.

 The fractional loss in the main lobe gain due to phase errors is given by [19]

2

0

G e
G

ϕσ∆−
= (15)

where G and oG are the main lobe power gains with and without the presence of phase

errors, respectively. Since for a 3 dB reduction in the main lobe level, a phase error

 17

standard deviation of 47φσ∆ = ° is needed, it can be concluded that the main lobe is not

significantly affected by random position errors.

2. Random Array Implementation

In general, the effects of misplacement errors depend strongly on the assumptions

about the random characteristics of the position deviations from the uniform array. In the

previous section, the results were derived based on the assumption of Gaussian phase

errors. However, there are several references in the literature which consider different

deployments of sensor arrays and consequently different assumptions about the random

distribution of the phase errors. One such example is included in [22] where the location

of each node in the sensor array is chosen randomly by a uniform distribution within a

disk.

Throughout this work, the position errors will be modeled as a deviation from the

ideal position of a uniform array. The position errors will be modeled as a uniformly

distributed random variable with a minimum value of 0 and a maximum value of

/ 2a λ× where a is the maximum percentage error; therefore, the mean error will be

/ 4a λ× . It is also assumed that there is displacement in both x and y directions as

indicated in Figure 7. The array axis for randomly placed elements is the best line fit of

the sensor nodes’ positions and it is assumed to be also the x-axis of the coordinates

system. In Figure 7 the best line fit of the nodes location is found and it is assumed to be

the array axis. Then the deviations are defined using this array axis as a reference. The

beampattern is computed in a plane which is perpendicular to the x-y plane and at 0φ (in

this case 0 45φ = °) with respect to the x-axis.

In Figure 8, the effect of position errors in a 10 1× linear antenna array topology

is depicted. The sidelobe levels have been increased and consequently the array

performance has been deteriorated. The mean beampattern of a 10 1× linear array with

mean position deviation equal to 0.3 / 2λ in both x and y directions is compared to the

beampattern of the ideal uniform 10 1× array for polar angle 0 30θ = ° and azimuth angle

0 45 .φ = ° The array axis is in the x-direction and the beampattern is in a plane

 18

perpendicular to the x-y plane and at 45° with respect to x-axis (0 45φ = °). For the

random case, the mean beampattern is obtained after averaging the beampatterns for 50

repetitions of randomly generated array topologies.

Figure 7. Ideal and approximately linear arrays with randomly deployed elements and

position errors.

 19

-80 -60 -40 -20 0 20 40 60 80-50

-40

-30

-20

-10

0

θ (degrees)

N
or

m
al

iz
ed

 P
ow

er
 G

ai
n

(d
B

),
Array with position errors

 Uniform array

Figure 8. Beampattern of a 10 1× linear array with position errors, compared to a 10 1×

array with equally spaced isotropic elements. Polar angle 0 30θ = ° , azimuth angle

0 45φ = ° and mean deviation 30% of / 2λ in both x-y directions.

Next, the relationship between the position errors and the increase in the average

sidelobe levels is plotted in Figure 9. The deviation from the ideal position is modeled as

a uniform random variable in the range of 0 to / 2λ in both x and y directions, i.e.,

mean deviation is 0.5 / 2λ . For each value of mean position error, the increase for the

first sidelobe (red line) and the largest of all the sidelobes (blue line) is calculated by

averaging 50 simulation runs. It is obvious that the sidelobe power gain increased

significantly as the mean deviation increased; for example, if the mean deviation is about

0.4 / 2λ , then the maximum sidelobe increase is almost 5.3 dB while the first sidelobe

increase is about 4.2 dB. Thus, the strongest sidelobe is lower from the main lobe by 7.7

dB only while the first sidelobe differs from the main lobe by 8.8 dB.

 20

10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

7

8

Mean percentage deviation from ideal λ/2 spacing

Si
de

lo
be

 in
cr

ea
se

 (d
B

)

Maximum sidelobe increase
1st sidelobe increase

Figure 9. Effect of position errors in a random array. Average sidelobe level (dB) for

the first (red line) and the largest (blue line) sidelobe as a function of the mean
deviation of the actual element positions from the ideal positions in linear10 1×
array with equally spaced isotropic elements.

C. BEAMFORMER IMPLEMENTATIONS

 In the previous sections, it was shown that the beampattern of an antenna array is

determined by the direction of the incoming signal, the number of the array

elements M N× , and the array topology, which includes the position errors and the set of

weights mnw . The objective of a beamformer is to preferentially receive a signal from a

specific direction or to preferentially transmit a signal in that direction. It is also usually

desirable to suppress interference signals, which come from other directions. Therefore,

the beamforming operation consists of adjusting the weights mnw in such way that the

main lobe is steered towards the desired signal’s AOA. Such a beamformer for M

elements in a linear array is depicted in Figure 10, and it is typically used for narrowband

signals.

 21

Figure 10. A 1M × narrow-band beamformer.

The output of the beamformer is given by

() ()Hy t w x t= (16)

where w is the weight vector and ()x t is the signal vector

 1 2() [() () ... ()]T
Mx t x t x t x t= . (17)

 A conventional beamformer can be described [8] as a delay-and-sum beamformer

with all weights having the same magnitude. The phases are selected to steer the array

beampattern towards a desired direction 0 0(,)θ φ . However, there are many types of

beamformers, which can be classified as either data independent or statistically optimum,

depending on how the weights are chosen [11].

In a data independent beamformer, the weights are chosen so as to create a

specified desired response for all signal and interference cases. The array data (the signal

vector ()x t) are either not known or not taken into account for the beamforming design.

If the desired response is (,)dF θ φ in order to receive a signal from a certain direction and

cancel out interferences from other directions, then the weight vector w is chosen in such

a way that the actual response (,)F θ φ approximates the desired one. In the following

 22

chapters, the beamforming operation will be based on data independent techniques,

which try to create an approximation of the desired response (,)dF θ φ .

The second class of beamformers [11] contains the statistically optimum ones. In

this case, the weights are chosen based on the statistics of the array data, and the goal is

to optimize the array response using several criteria. Generally, a statistically optimum

beamformer tries to cancel out the interfering signals by placing nulls in their incoming

directions in order to maximize the Signal to Noise Ratio (SNR) at the output of the

beamformer. Such a beamformer is the Multiple Sidelobe Canceller (MSC), which needs

auxiliary channels free of the desired signal but is very simple in its implementation.

Another optimum beamformer requires knowledge of both the desired signal and noise

covariance matrices sR and nR , respectively, and has the advantage that it maximizes the

SNR, but it is not easy to implement. The Minimum Variance Distortionless Response

(MVDR) beamformer computes the weights given a set of constraints and provides a

very good performance, but it is also computationally intensive.

There are also adaptive algorithms for beamforming, which compensate for the

fact that the signal’s statistics are usually not known or may vary with time. Such

beamformers for the weight determination are based on the well-defined and popular

LMS and RLS algorithms and also on numerous variations of them. A more thorough

analysis of these adaptive algorithms and of the previously described statistically

optimum beamformers can be found in, [11], [12] and [14] .

 D. WIRELESS SENSOR NETWORK ARRAYS

This section presents a discussion of sensor node deployment schemes and the

concepts of the processing and communication costs which will be used for the

performance evaluation of the beamforming algorithms.

1. Deployment of Sensor Nodes

As mentioned in Chapter I, recent developments in the MEMS technology have

enabled the construction of small, cheap, multifunctional sensors with signal processing

 23

and communication capabilities. These sensor nodes can be deployed over an area of

interest and can be used in order to collect process and transmit information. However,

there are still many challenges for the efficient implementation of a sensor network, such

as efficient power consumption, controllable deployment of the nodes, source

localization, self organization, and others.

In this work, the specific application scenario which is examined is summarized

in Figure 11. A set of sensor nodes are deployed in the battlefield, and they acquire the

desired information, which may be any type of signal (acoustic, video, etc.). The UAV,

flying over the sensor field, establishes a connection with the network in order to obtain

the collected data. Due to the limited sensor capabilities, a single node can not transmit

its data directly to the UAV since it does not have the required transmission range.

However, the nodes can be organized into a large antenna array where each sensor plays

the role of an antenna element and implements a distributed beamformer.

z-axis

y-axis

φ0

Flying
UAV

θ0

Sensor
network

Figure 11. A sensor network deployment used for information transfer to a UAV (After
Ref. [34]).

 24

In the previous section, it was shown that the best performance for an antenna

array is achieved when the elements are located on a rectangular grid with an

interelement distance equal to / 2λ . Nevertheless, it is obvious that this ideal deployment

can rarely be achieved in a real operational environment. The nodes may be dropped by

the UAV or deployed by a ground force and consequently the sensor array topology

cannot be the desired one. This randomness imposes position errors, which effect the

beampattern of the sensor array as analyzed in the previous section.

Much work has been done in analyzing the dependence of the random array

response on the statistical characteristics of the array topology [19], [20], [21],[22].

Furthermore, much emphasis has been placed on algorithms that allow a node to define

its position with respect to a reference node within the sensor network [23]. In the next

chapter, several beamforming algorithms that use location information will be described.

Assuming that the coordinates of a node in a local coordinate system are known, there are

many schemes for successfully mitigating the effect of the position errors and choosing a

suitable set of weights for the beamformer. However, there are limitations in the

performance of these algorithms when the position errors are large enough.

Another practical approach could be to search and locate a suitable subset of

nodes and then form an antenna array. In [24] and [25], a central node (cluster head) tries

to find a set of nodes whose topology is close to a uniform linear or planar array

according to some geometric criteria. Using only the distance between the nodes as

known information, the proposed algorithm tries to find the optimum subset of sensors

with minimum mean position error. Figure 12 illustrates this concept, where a set of five

sensors yielding the best approximation to a 5 1× uniform linear array is determined.

After finding this optimum set of nodes, several beamforming schemes can be applied in

order to find the weight coefficients. Therefore, the combination of finding a suitable set

of nodes with an appropriate beamforming technique can provide sufficient performance.

 25

Figure 12. Finding five nodes approximating a 5 1× linear array with equally spaced

elements (After Ref. [24]).

2. Communication and Computational Cost

An important issue in the sensor networks is the efficient energy consumption by

the nodes. Low-power hardware components and low-duty cycle operation techniques

must be applied in order to achieve the required ultra-low-power operation. Energy is

consumed while processing or transmitting data. Therefore, the beamforming algorithms

must be evaluated in terms of realistic power consumption. In order to achieve this goal,

it is obvious that there is a need for schemes implemented in a distributed manner; thus,

the computational effort and consequently the energy needed is shared among the

sensors. Moreover, these techniques should minimize the communication since wireless

transmission consumes considerable amount of power during a node’s operation.

 The need for distributed algorithms in order to minimize the communication

power consumption is discussed in [26]. A radio transmitting 1 kb of data over a distance

of 100 m, with an operating frequency of 1 GHz using BPSK modulation having an error

probability of 10-6 and fourth-power distance loss with Rayleigh fading, requires

 26

approximately 3 Joules of energy. The same amount of energy can perform 300 million

instructions for a 100 MIPS/watt general processor [26]. This results in a ratio of 30,000

processing instructions per transmitted bit with equal energy consumption. Other

practical implementations [26], [27] have yielded ratios from 200 to 3000. This ratio of

communication cost to computational cost depends largely on the sensor characteristics

(transmission range, complexity of the instruction in number of bits, etc.) and can be

increased in the presence of noise where retransmissions will be needed.

In general, the relationship of the communication and computational cost with the

power consumption depends on the technical specifications of the sensors, the

applications, and other factors that are difficult to exactly predict, such as the presence of

noise. However, a general framework can be formed using the definitions in Table 1.

Symbol Definition

tbP Mean power per transmitted bit (power consumed to transmit a number of

bits divided by this number)

tbN Number of transmitted bits

iP Mean power per instruction in the sensor’s processor (power consumed to

perform a number of instructions, divided by this number)

iN Number of instructions

cP Total transmission power or communication load

pP Total processing power or computational load

P Total power for a specific application

Table 1. Quantities used for defining the communication and computational cost.

 27

The transmission power cP is given by

c tb tbP N P= × (18)

and the processing power is given by

 p i iP N P= × (19)

while the total power is the sum of these two factors

 .c pP P P= + (20)

The parameter tpη is defined as the ratio of the power per transmitted bit to the power per

instruction, and as mentioned before, it can vary from 200 to 3000, indicating that one

transmitted bit requires much more energy than one performed instruction by the sensor’s

processor.

tb
tp

i

P
P

η = . (21)

 Throughout this work the communication cost is focused on the implementation

of the algorithms. Therefore, it depends only on the data elements that need to be

transmitted for the implementation of the different beamforming schemes. These data

elements must be encapsulated in data packets, thus there is a communication overhead

due to these packets. Furthermore, the organization of the sensor nodes in a cluster needs

also a number of control packets. This networking cost, which depends on various factors

as the number of sensors, the noise and the protocols used, will not be taken into account

throughout this work and will be left for future analysis.

 Using the above definitions, the total power consumption for the implementation

can be calculated and the different beamforming methods can be compared using a

common framework.

 28

E. SUMMARY

In this chapter, the basics of beamforming in antenna arrays were discussed;

specifically, the beampatterns of the uniform linear and planar arrays were presented.

This was followed by an analysis of the effect of the position errors in random arrays on

the array performance as measured by an increase in the sidelobe levels. Beamformer

implementations were discussed, including a brief reference to various techniques that

have been reported in the literature. The specific operational scenario for communication

between sensor networks and UAV was also briefly presented. Finally, the

communication and computational cost as functions of the power consumption were

introduced as metrics for the evaluation of beamforming algorithms in sensor networks.

The strict requirements for low power consumption by the sensor nodes create the need

for distributed beamformimg algorithms (presented in Chapter IV) compared to

centralized algorithms (presented in Chapter III).

 29

III. CENTRALIZED IMPLEMENTATION OF A BEAMFORMER

This chapter is focused on centralized implementation of the beamforming

operation for linear arrays. In the centralized approach, it is assumed that all information

needed to determine the weight vector is available in a specific node, which can be the

cluster head in a sensor network. This node will collect all the data, such as the steering

vector (,)d θ φ , which depends on the array topology, the direction of the desired signal

0 0(,)θ φ and the direction of potential interferences, and will calculate the weight vector

to provide the desired array response at the output of the beamformer.

Two different implementations are presented and their advantages and

disadvantages, such as simplicity in implementation, overall performance and

computational demands, are discussed. Finally, an analysis of the computational and

communication cost examines the feasibility of these implementations in sensor networks

where power efficiency is a major issue.

A. PHASE MATCH OF THE STEERING VECTOR

This is the simplest implementation of a beamformer and can be considered an

extension of the conventional beamformer for the case of random position errors. In this

method, as in the case of a uniform array (see Chapter II), the weights of the elements w

are chosen with the goal to match the steering vector 0()d θ and create the main lobe with

maximum gain towards the AOA 0θ . If the steering vector is

 2 0 3 0 0sin sin sin
0() [1 ...]nj x j x j x Td e e eβ θ β θ β θθ = (22)

then the weights are 0()w d θ= . Each element of the weight vector has unit magnitude

and the same phase as the corresponding element of the steering vector. Thus, the array

response

 () ()HF w dθ θ= (23)

has its maximum 0()F θ at the AOA 0θ .

 30

Due to position errors in the sensor array, the distances 1 2, ..., nx x x from the

reference node are not multiples of the ideal distance / 2λ . However, the weight vector

can still be selected to match the steering vector in the desired direction of 0θ . The

implementation of this approach in a sensor network is very simple and assumes the

following:

a) Each node can calculate its position from a reference node accurately.

b) The relative positions of the nodes are disseminated to a central processing

node, a cluster head if a cluster hierarchical architecture is established.

c) The desired steering direction of the incoming signal is known to the central

node.

d) Errors due to noise during the communication among the nodes are not taken

into account.

The cluster head (central node) collects all the necessary information and

calculates the weight vector. Then it sends to each node its corresponding weight, which

will be used for the beamforming and the steering of the sensor array.

The array pattern of this simple beamformer is shown in Figure 13 for a 10 1×

linear array with uniform position errors up to 0.4 / 2λ . The signal’s direction of arrival is

known (0 30θ = ° , 0 45φ = °). The figure shows the mean beampattern averaged over 50

simulation runs.

Some conclusions can be drawn for this beamforming technique. First, it is simple

in implementation since the central processing node needs only to receive the relative

position from each node one at a time and then send back the calculated weights to each

node. Second, the main lobe of the beampattern has the maximum value in the direction

of arrival 0 0(,)θ φ , and it is exactly equal to the maximum value of the (ideal) uniform

array. However, the beampattern presents notable deviations for angles other than the

AOA. In this specific case, the sidelobe power level increases significantly for angles

lower than 0 .° In general, the performance of the array approaches that of the uniform

array at angles around the AOA but deteriorates for other elevation angles.

 31

-80 -60 -40 -20 0 20 40 60 80
-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

θ (degrees)

N
or

m
al

iz
ed

 P
ow

er
 G

ai
n

(d
B

),

Uniform linear Array

Random array - phase match

Figure 13. Mean beampattern of a random 10 1× uniform linear array with position

errors, averaged over 50 simulation runs, compared to a uniform 10 1× array of
equally spaced elements. The AOA is (0 30θ = ° , 0 45φ = °). The position errors
are uniformly distributed between 0 and and 0.4 / 2λ in both x and y directions.
Beamforming is implemented by matching the steering vector.

B. BEAMPATTERN APPROXIMATION IN THE LEAST SQUARE SENSE

The beamformer presented in the previous section computes the weights of the

antenna elements by trying to achieve the best performance in the direction of the signal

arrival and does not set any requirement for the other directions. Although it behaves well

at angles around the desired direction, it suffers from high sidelobes in other directions.

Therefore, it cannot be used when there are interference signals coming from directions

other than the signal’s AOA or if the desired signal comes from a certain range of

directions. If there is a strong source of interference, the desired array response should be

zero in that direction, in order to cancel the interfering signal. As a result, there is a need

for a beamforming design, which calculates the weight coefficients w in such way that

the resulting response approximates the desired response over a range of directions.

 32

1. Least Squares Problem Formulation

As mentioned before, the array response for a specific angle θ is given by

 () ()HF w dθ θ= . (24)

If the desired response ()dF θ is defined over m number of angles, then the actual array

response ()F θ of n antenna elements for these m angles is

 () ()HHF w Dθ θ= (25)

where

[]1 2() () () () T
mF F F Fθ θ θ θ= L (26)

is a 1m× vector which contains the array response for each one of the angles iθ , with

1,i m= K . The weight vector w is an 1n× column vector and ()D θ is an n m× steering

matrix containing the steering vectors ()id θ for each one of the angles iθ :

[]1 2() () () ()mD d d dθ θ θ θ= L (27)

or

11 1 1 2

22 1 2 2

1 2

sinsin sin

sinsin sin

sin sin sin

()

m

m

n n n m

j xj x j x

j xj x j x

j x j x j x

e e e
e e e

D

e e e

β θβ θ β θ

β θβ θ β θ

β θ β θ β θ

θ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L

L

M M O M

L

 . (28)

Note that for simplicity the array response is defined over a set of arrival angles

1, , mθ θK while the azimuth angle 0φ is fixed. If the desired response is defined over a

combination of m elevation angles 1, , mθ θK and q azimuth angles 1, , qφ φK , then the

array response (,)F θ φ is a m q× matrix and the steering matrix (,)D θ φ is an n m q× ×

3-D matrix. This adds unnecessary complexity to the formulation of the problem and is to

be avoided. In the following analysis, the array response will be defined for a known,

fixed azimuth angle 0φ and a set of m arrival angles 1, , mθ θK .

 33

If the desired response is ()dF θ , the goal is to select the weights w such that the

actual response ()F θ generated by this set of weights approximates the desired response.

This can be done by trying to minimize the 2L -norm of the difference between the

desired and the actual response. In other words, the weight coefficients w are chosen in

order to minimize the mean squared error between ()dF θ and ()F θ

2min () ()dw
F Fε θ θ= − . (29)

Therefore the problem of the antenna weight calculation is solved using a classic least

squares (LS) procedure. Taking the transpose of (25), the array response can be written as

() ()HF D wθ θ= . (30)

For m number of angles or approximation points and n number of sensors, with m n> ,

the problem becomes an overdetermined LS problem

2
min () ()H

dw
D w Fε θ θ= − (31)

where again ()F θ is a 1m× vector and ()HD θ is a m n× matrix. Provided that the n n×

matrix () ()HD Dθ θ is invertible (i.e., ()HD θ is full rank), then the solution to the LS

problem of (30) is given by

() ()dw D Fθ θ+= (32)

where ()D θ+ is the pseudo inverse of ()HD θ defined as

1() (() ()) ()HD D D Dθ θ θ θ+ −= . (33)

The weight coefficients that have been calculated using the LS approach have both

different amplitudes and phases. In the array with equally spaced elements, the

amplitude mI was the same for all elements (1,mI m= ∀) and only the phase was different.

However, in the LS approach the weights have also different amplitudes. So in the LS

approaches the sensors modify both amplitudes and phases in order to approximate the

desired response.

 34

 The design of an array using the above decribed LS approximation of the desired

array response is related to the design of arrays using the Fourier analysis. In this

approach, the desired array function, which is required to create the desired array

response, can be expanded in a Fourier series. Truncating this Fourier series, the result is

an array with a finite number of elements. Such an array is optimum in the sense that no

other array with the same number of elements can approximate the desired array function

with lower mean squared error.

2. Implementation and Performance Analysis

The significant advantage of the above LS approach is that the desired response

can be closely approximated over a set of angles, thus providing the ability to cancel out

unwanted signals and amplifying only the desired one. Results of such an implementation

of the LS scheme for a 10 1× random array can be seen in Figure 14, where the desired

response ()dF θ is the array response of the (ideal) uniform 10 1× linear array. For the

approximation of the desired beampattern 180 points (angles from 90− ° to 90°) were

used. The mean beampattern is averaged over 50 simulation runs, and there is virtually no

difference between the desired (red line) and the actual beampattern (black line) as

generated by the weights computed by minimizing the LS criterion. The actual response

can be also compared with the response derived by the technique of the phase match

approach from the previous section (cyan line).

 35

-80 -60 -40 -20 0 20 40 60 80

-35

-30

-25

-20

-15

-10

-5

0

θ (degrees)

N
or

m
al

iz
ed

 P
ow

er
 G

ai
n

(d
B

),

Beampattern with position errors
Uniform linear array
LS approximation

Figure 14. Mean beampattern of a random 10 1× linear array with position errors (blue)

and mean beampattern calculated using the “phase match” (cyan) and the LS
approach (red), averaged over 50 simulation runs, compared to a uniform 10 1×
array (black). The AOA is (0 30θ = ° , 0 45φ = °). The position errors are uniformly
distributed between 0 and and 0.5 / 2λ in both x and y directions

The performance is almost the same for both phase match and LS schemes around

the desired AOA, but the LS approach is obviously better in any other direction. The

phase match technique is more vulnerable to interference signals, especially to those

coming from 0θ < ° , while the LS approach creates a beampattern almost identical to the

desired response of a uniform array. Indeed, the determination of the weights using the

LS approximation technique achieves elimination of the effect of the position errors (blue

line); the position errors are uniformly distributed between 0 and 0.5 / 2λ in both x

and y directions.

The LS approach is clearly a centralized approach. The implementation in a

sensor network makes similar assumptions as in the phase match approach including an

additional assumption: the desired array response defined over a set of angles 1, , mθ θK is

 36

assumed to be known to the cluster head. This response may include the direction 0 0(,)θ φ

of the incoming signal and/or the directions of interfering sources.

The cluster head collects all the necessary information and specifically the

relative positions 1, , nx xK of the nodes and the desired response ()dF θ . The steering

matrix ()D θ is completely defined by the positions and the desired angles for the

beampattern approximation. After collecting all necessary data, the cluster head

constructs the steering matrix using the position data and the set of angles and calculates

the weight vector by solving the LS problem of (30). Each node receives the

corresponding coefficient from the cluster head, and the sensor array is ready to transmit

or receive towards the desired signal’s direction and simultaneously suppress potential

interfering sources.

The LS approach’s performance is satisfactory in eliminating the effect of the

position errors as observed in Figure 14. The assumptions mentioned before, such as that

information about the relative position of the nodes and the desired response (incoming

direction of signal and interferences), are reasonable in a sensor network environment.

There are algorithms which allow a sensor node to calculate its relative position from a

cluster head using localization techniques [23], [26]. Thus, the LS scheme could be

implemented in a cluster-based sensor array where all information is collected and

processed in the cluster head.

Nevertheless, this centralized approach suffers from the inherent problems of any

scheme where the processing effort is not distributed among the nodes but performed by

a single node (cluster head). Since the main effort is undertaken by one sensor only, a

single point of failure is created in the sensor array. If this specific node fails, then the LS

problem has to be solved from the beginning, i.e. a new central sensor must collect all the

information, calculate the weight coefficients and disseminate them to the other nodes.

This is a waste of valuable processing and communication resources which are very

restricted in the sensor nodes. Considering that failure of sensor elements in a sensor

array is something common due to their low battery life and low-cost construction, this

centralized approach lacks robustness.

 37

Furthermore, since new nodes may offer to participate in the sensor array or other

nodes may decide to switch into sleep mode due to limited power, the array topology will

change frequently and dramatically. This means that, for any modification in the sensor

array, the LS problem must be solved from the start in order to determine the new set of

weight coefficients. For this reason, the centralized approach does not offer the required

scalability, which is desired in a sensor network environment.

Finally, the processing load of solving the LS problem increases exponentially as

the number of sensors n and the number of approximation points (angles) m increase. If

this processing effort is performed by a single sensor, then its power will be consumed

rapidly and the sensor will fail.

The solution is a distributed implementation of the LS approach, and such two

schemes will be presented in Chapter IV. First, the single point of failure limitation can

be overcome by distributing the processing load among many nodes. The total processing

effort in a distributed approach may be higher compared to the centralized approach, but

the tradeoff is the increased robustness of the system. Furthermore, the LS approach must

be implemented in such way that changes in the array topology do not require the

solution of the problem from scratch but only small modifications to the already

calculated weight coefficients. This can be achieved by an algorithm implemented in a

distributed fashion, which will offer considerable scalability to the problem. Since the LS

approach performs very well in approximating the desired pattern, a distributed

implementation of it will first retain this feature and second, it will offer the desired

scalability and robustness; thus, it can provide a reliable solution for beamforming in

sensor networks.

In the next section, a discussion about the processing cost as a function of the

number of approximation points is presented. As mentioned before, the processing load

increases dramatically with the number of approximation points; therefore, the minimum

number of points should be used in order to reduce the computational effort.

 38

C. APPLICATION OF LEAST SQUARES BEAMFORMING APPROACH TO
SENSOR NETWORKS

In the previous section the LS approach was presented for the approximation of a

desired response defined over a set of direction angles or approximation points. As

mentioned before, the processing load of the LS approach depends largely on the number

of nodes and the number of approximation points. For example, if n is the number of

sensors and m the number of angles, the solution of the LS problem using the normal

equations needs 2()3
nm n+ flops [28]. By using fewer approximation points, the

processing load can be reduced, which is crucial for the sensor nodes with limited

processing power. However, the solution will not be the same as the unmodified case,

and the approximation will degrade as the number of points is decreased. Therefore, it is

worth examining the “quality” of the desired response approximation as a function of the

number of approximation points.

In order to illustrate this relationship, a series of 50 simulations with

corresponding random arrays was performed. In each run, the desired response of a

uniform linear 10 1× array (ideal) was approximated using different number of

approximation points ranging from 10 to 90. For each set of approximation points, the

corresponding solution for the weight coefficients was derived using the LS approach.

The reference approximated response and the reference weight vector was based on 180

approximation points (one for each degree from 90− ° to 90°). The solution of the LS

approach for each set of approximation points is compared to the reference solution

derived from 180 points.

Two error metrics are used to evaluate the performance of each set of

approximation points. The first metric we is the mean 2L -norm of the difference between

the reference weights and the examined weights

2
180

1

1 S

iwe w w
S

= −∑ (34)

 39

where 180w are the weights derived from the 180-point approximation (reference), iw are

the weights derived by an i - point approximation, for 10, ,90,i = K and 50S = is the

number of simulation runs.

 The second metric Fe is the mean 2L -norm of the difference between the

reference array response derived from 180 approximation points and the array response

for fewer approximation points (10 to 90)

2

180
1

1 () ()
S

F ie F F
S

θ θ= −∑ (35)

where 180 ()F θ is the approximated array response using 180 points (reference) and ()iF θ

is the response derived by an i - point approximation, for 10, ,90i = K .

 The test topology is a 10 1× random array where the antenna elements have

position errors, modeled as uniform random variables between 0 and 0.4 / 2λ . The results

are shown in Figures 15 and 16 for the two errors we and Fe , respectively.

10 20 30 40 50 60 70 80 90 100
10-2

10-1

100

101

Number of angles (approximation points)

M
ea

n
sq

ua
re

d
er

ro
r b

et
w

ee
n

th
e

w
ei

gh
ts

Figure 15. Error metric we of weights as a function of the number of approximation

points m .

 40

10 20 30 40 50 60 70 80 90 100
100

101

102

103

Number of angles (approximation points)

M
ea

n
sq

ua
re

d
er

ro
r b

et
w

ee
n

th
e

ar
ra

y
re

sp
on

se
s

Figure 16. Error metric Fe of approximated array responses as a function of the number

of approximation points m .

In Figure 15, error metric we decreases as the number of approximation points

increases, which is reasonable. The significant result comes from the fact that the

difference between the reference weights and the weights computed for fewer

approximation points is very small, even for 15 approximation points. This means that

using only 15 approximation points, the weight vector is very close to the reference

weight vector (180 approximation points). Therefore, there is no need to use 180 points to

approximate the desired response since this can be done by using only 15 points, which

implies that the processing cost can be significantly reduced.

Similar comments can be made about the results in Figure 16 for the error

between the reference array response derived by 180 approximation points and the

responses derived by fewer points. If the desired response is known and needs to be

approximated using a LS approach for the determination of the weights, the number of

approximation points can be substantially lowered without significant degradation in the

 41

performance of the antenna array. Thus, the processing cost can be reduced, which is

desirable in a sensor network environment with restrictions on the power consumption.

D. SUMMARY

In this chapter, two centralized approaches for the computation of the weights

were presented. The first technique is simple and easy to implement, but the performance

is not satisfactory in the presence of interference signals. The second approach is based

on the LS approximation of a known desired response by selecting the weights in order to

minimize the error between the actual and the desired response. Although having

satisfactory performance, the LS scheme still lacks robustness and scalability since it is a

centralized approach. Finally, the performance of the approximation of the desired

response as a function of the number of approximation points was examined. The next

chapter presents two algorithms that implement the LS approach in a distributed fashion.

 42

THIS PAGE INTENTIONALLY LEFT BLANK

 43

IV. DISTRIBUTED ALGORITHMS FOR BEAMFORMING

A Least-Squares (LS) based centralized approach for solving the beamforming

problem was described in the previous chapter. Nevertheless, in a sensor network

environment where the processing and communication load must be shared among the

nodes, there is a need for distributed beamforming algorithms.

Two distributed implementations of the LS beamforming problem are proposed in

this chapter. The first is based on the well known QR factorization using Householder

transformations, where each node performs a part of the QR decomposition process. The

second approach is a distributed iterative solution of the LS problem, which converges

quickly to the actual weight coefficients. Both algorithms efficiently distribute the

processing load among the nodes; however, the tradeoff consists of an increase in the

communication cost.

A. DISTRIBUTED QR FACTORIZATION WITH HOUSEHOLDER
TRANSFORMATIONS

1. Householder Transformations

A Householder transformation (or Householder reflection) is a transformation of

reflecting a vector about some known plane [28], [29]. Given an arbitrary vector

[]1 2
T m

mx x x x= ∈L � and a unit vector []1 1 0 0 T me = ∈L � , the

m m× Householder matrix is defined as the matrix that transforms x to a vector parallel

to 1e

 1H x eα= (36)

where α is a scalar.

 A Householder matrix can be formed by [29]

1 TH I vv
β

= − (37)

 44

where β is a scalar, I is an identity matrix and v is an 1m × vector. From the above

definition, the Householder matrix H is completely determined by vector v and scalar

β , so there is no need to store all 2m elements of ,H but only v andβ , which are only

1m + elements.

 The significant characteristic of the Householder matrix is that it is an orthogonal

matrix; thus, it has the property

 1TH H H−= = . (38)

Orthogonal matrices or orthogonal transformations can be used to obtain a QR

factorization of a matrix A , and this in turn can be used to solve a linear system Ax b= ,

as described in the following section.

 The above defined Householder matrix zeros out all the elements of an 1m×

vector x except the first one, but one can construct Householder matrices that zero out

only the last m k− components of a vector x [29]. Let ()1x and ()2x define

[](1)
1 2 1

T
kx x x x −= L (39)

[](2)
1

T
k k mx x x x+= L (40)

while ()1I and ()2I denote (1) (1)k k− × − and (1) (1)m k m k− + × − + identity matrices,

respectively. From (32), an (1) (1)m k m k− + × − + Householder matrix (2)
kH can be

constructed as [29]

(2) (2) 1 T
k kk

k

H I v v
β

= − (41)

such that

 (2) (2)(2)
12kH x x e= . (42)

By defining the m m× matrix kH as

 45

(1)

(2)

0
0k

k

I
H

H
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 , (43)

the following results

1/ 2(1) (1)(1)

2
1 1(2) (2)(2) (2)

0 0
T

m

k k i
i kk k

I x x
H x x x x

H x H x
−

=

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎛ ⎞
= = = ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎜ ⎟

⎝ ⎠⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
∑L L . (44)

 The Householder matrix kH defined in (43) is an orthogonal matrix that can be

written as

 1 T
k kk

k

H I v v
β

= − (45)

and acts like an identity matrix on the first 1k − coordinates of any vector mx∈� and

transforms the rest into a unit vector. Moreover, it is not necessary to store the entire

matrix kH , but it is enough to store the (1) 1m k− + × vector kv and the scalar kβ .

2. QR Decomposition

The QR decomposition is used in order to factor a matrix A into a product of two

matricesQ and R [28], [29]

 A QR= . (46)

If A is an m n× matrix, then Q is an m m× orthogonal matrix and R is an m n× upper

triangular matrix. The QR decomposition is used to solve a linear system Ax b= , and it

can be computed by applying a series of Householder transformations to matrix .A

By defining

11 12 13 1

21 22 23 2

31 32 33 3

1 2 3

n

n

n

m m m mn

a a a a
a a a a

A a a a a

a a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L

L

L

M M M O

L

 (47)

 46

and using the procedure described in the previous section, an m m× Householder matrix

1H can be found, which when applied to the first column of A will give a multiple of 1e .

Thus, the result of multiplying 1H with A will be

(1) (1) (1) (1)
11 12 13 1

(1) (1) (1)
22 23 2
(1) (1) (1)

1 32 33 3

(1) (1) (1)
2 3

0
0

0

n

n

n

m m mn

a a a a
a a a

H A a a a

a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L

L

L

M M M O

L

 (48)

where the superscript denotes that the matrix element is affected by the 1H

transformation. Note that 1H is fully described by vector 1v and scalar 1β as mentioned

before. Then, a second Householder transformation 2H that will zero out the last 2n −

elements in the second column of 1H A can be again constructed. Thus, 2 1H H A will be

of the form

(1) (1) (1) (1)
11 12 13 1

(2) (2) (2)
22 23 2

(2) (2)
2 1 33 3

(2) (2)
3

0
0 0

0 0

n

n

n

m mn

a a a a
a a a

H H A a a

a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L

L

L

M M M O

L

 (49)

where again the superscript indicates the last transformation that affected the

corresponding element. For example, the first column and the first row are not affected

by the 2H transformation. From (41), 2H is of the form

1
2 (2)

2

0
0
I

H
H

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 (50)

where 1I is a 1 1× identity matrix, and (2)
2H is an (1) (1)m m− × − Householder matrix.

Since (2)
2H is fully determined by an (1) 1m− × vector (2)

2v and a scalar 2β , only

m elements are needed to be stored for (2)
2H .

 47

 Continuing to apply the Householder transformation in this way will result in an

upper triangular matrix R , i.e.,

1 2 1n nH H H H A R− =L (51)

where R is of the form

(1) (1) (1) (1)
11 12 13 1

(2) (2) (2)
22 23 2

(3) (3)
33 3

()

0
0

0

0

0 0 0 0 0

n

n

n

n
nn

a a a a
a a a

a a

R
a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L

L

M L

M M L M

M M M O

M M M M

M M M M M

. (52)

The m n× matrix R is composed of two matrices, a n n× upper triangular 1R and a

()m n n− × zero matrix:

1

0
R

R
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (53)

Let ,TQ an m m× matrix, be the product of the Householder transformations

1
1 2 1

2

T
T

n n T

Q
Q H H H H

Q−

⎡ ⎤
= = ⎢ ⎥

⎣ ⎦
L (54)

where 1
TQ is an n m× matrix containing the first n rows of TQ , and 2

TQ is an

()m n m− × matrix containing the last m n− rows. Since TQ A R= and Q is orthogonal,

it follows that

[] 1
1 2 1 10

R
A QR Q Q Q R

⎡ ⎤
= = =⎢ ⎥

⎣ ⎦
. (55)

 48

The above derived QR decomposition can be used in order to find the solution to

the least squares problem Ax b= , where A is an m n× matrix and x and b are 1n× and

1m× vectors, respectively. The solution x̂ satisfies the normal equations [29]:

 T TA Ax A b= (56)

and by using the QR decomposition, they can be written in the form

1 1 1 1 1 1
T T T TR Q Q R x R Q b= . (57)

By setting

11

22

T
T

T

cQ b
c Q b

cQ b

⎡ ⎤⎡ ⎤
= = = ⎢ ⎥⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦
 (58)

 and taking into account that 1 1
TQ Q I= and 1

TR is nonsingular, (57) simplifies to

11R x c= . (59)

The system of (59) can be solved using back substitution [29] and the solution

 1
11x̂ R c−= (60)

is the unique solution to the least squares problem.

 In summary, if A is an m n× matrix, the least squares problem can be solved

using the QR decomposition by Householder factorizations as follows:

 a) Compute 1 2 1n nR H H H H A−= L and 1 2 1n nc H H H H b−= L .

 b) Partition R and c into a block form 1

0
R

R
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 and
1

2

c
c

c
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

 where 1R and 1c

each have n rows.

 c) Finally, solve 11R x c= using back substitution.

 49

3. Proposed Algorithm Description

In Chapter III, a method for determining the weights that provide the best

approximation of a desired response in the LS sense was described. The LS problem of

(30) can be solved using the QR factorization presented in the previous section. The

cluster head collects all the positions from the sensor nodes and constructs the steering

matrix ()HD θ . Then it computes the QR factorization using Householder transformations

and finds the solution of the weight vector w for a given desired response ()dF θ . The

procedure is straightforward, but it lacks robustness since a single node bears the entire

processing load, which increases the possibility of failure, causing the problem to be

solved again from scratch. Therefore, a distributed algorithm for solving the LS problem

with the QR decomposition is desirable. The processing load is shared by the nodes, but

there is also a tradeoff of increased communication load.

For the implementation of the algorithm, the following reasonable assumptions

are made:

a) Each node can calculate its position from a reference node accurately.

b) Each node can broadcast information to other nodes in the cluster.

c) The desired array response for a set of m directions 1,..., mθ θ of the incoming

signal is known.

d) Errors due to the noise during the communication among the nodes are not

taken into account.

The algorithm exploits the specific nature of the matrix ()HD θ to be decomposed

by the QR factorization. By taking the transpose of (28), the steering matrix is

11 1 2 1

21 2 2 2

1 2

sinsin sin

sinsin sin

sin sin sin

()

n

n

m m n m

j xj x j x

j xj x j x
H

j x j x j x

e e e
e e e

D

e e e

β θβ θ β θ

β θβ θ β θ

β θ β θ β θ

θ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L

L

M M O M

L

 (61)

 50

where n is the number of sensor nodes and m the number of angles or approximation

points. Obviously, the first column is constructed by the position of the first node 1x and

the set of angles 1,..., mθ θ . Similarly, the elements of the second column depend on the

second node position 2x and the set of m angles. In general, each column i of ()HD θ

depends only on the position ix of the corresponding node and the desired angles.

 From (61), it is obvious that since one node knows its position from a reference

node and the set of m angles, it can construct its corresponding column of ()HD θ

without exchanging any information, such as their position, with the other nodes. Thus,

the matrix ()HD θ can be stored in a distributed way among the sensor nodes.

 From the analysis of the previous section comes the observation that the first

Householder transformation 1H is needed to zero out all the elements of the first column

except for the first element. Since for the construction of matrix 1H only the data values

from the first column are used, the conclusion drawn is that it can be computed by the

first node only. Therefore, the first node, which initializes the QR decomposition,

calculates the 1H matrix and multiplies its own first column by this matrix. Then it

broadcasts 1H to all other nodes, which in turn transform their corresponding columns

with 1H . There is no need to transmit the entire matrix 1H but only the vector 1v and the

scalar 1β . After this first step of 1H computation, transmission and application is

completed, the distributed steering matrix will have the form of (48):

(1) (1) (1) (1)
11 12 13 1

(1) (1) (1)
22 23 2
(1) (1) (1)

(1) 1 32 33 3

(1) (1) (1)
2 3

0
() () 0

0

n

n
H H

n

m m mn

a a a a
a a a

D H D a a a

a a a

θ θ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L

L

L

M M M O

L

 (62)

where (1)
ija are the matrix elements transformed by 1H .

The second step is similar to the first and is performed by the second node. The

second node computes the 2H transformation, which depends only on the second

 51

column, and then 2H (vector 2v and scalar 2β) is broadcast to each node which in turn

applies the new Householder transformation to its column. The resulting distributed

matrix is

(1) (1) (1) (1)
11 12 13 1

(2) (2) (2)
22 23 2

(2) (2)
(2) 2 1 33 3

(2) (2)
3

0
() () 0 0

0 0

n

n
H H

n

m mn

a a a a
a a a

D H H D a a

a a

θ θ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L

L

L

M M M O

L

. (63)

From the structure of (2) ()HD θ , the following observations are made. The first

node receives the 2H transformation, but it does not need to apply it to its column since

2H does not affect the first column. Additionally, each node does not need to apply the

2H to the first element of its column since the first row is not affected by the 2H

transformation. Similarly, the following Householder transformations are applied only

when needed, thus avoiding redundant calculations.

The procedure goes on until all Householder transformations 1, , nH HK are

computed, broadcast and applied by the nodes. The distributed matrix will result in an

upper triangular form

(1) (1) (1) (1)
11 12 13 1

(2) (2) (2)
22 23 2

(3) (3)
33 3

() 1 2 1 ()

0
0

0
() ()

0

0 0 0 0 0

n

n

n

H H
n n n n

nn

a a a a
a a a

a a

D H H H H D
a

θ θ−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L

L

M L

M M L M
L

M M M O

M M M M

M M M M M

. (64)

The QR decomposition of the ()HD θ matrix is achieved in a fully distributed way, and

the processing load is shared among the nodes. There is no additional processing effort

since the Householder transformations are applied only to the affected elements, as

 52

described before. There is no difference between the centralized and the distributed QR

decomposition in terms of the processing load. The significant advantage is that instead

of one node bearing all the computational burden, each node in the array takes its turn in

completing the QR decomposition. However, there is some additional communication

load since the iH matrices need to be broadcast. This is the tradeoff for relieving the

cluster head from the heavy processing load. This first phase of the algorithm is depicted

in Figure 17. In the 1st step the 1st node calculates the matrix 1H and broadcasts it to all

the other sensors. In the 2nd step the 2nd node calculate the matrix 2H and the procedure

continues until the last node which computes the last matrix 3H

Figure 17. First phase of the algorithm for distributed QR decomposition by the

sensor nodes. Bolded and underlined iH above the nodes denote the Householder
transformations that are already stored in the sensor. Simple iH denote the just
computed and broadcast Householder transformation.

The next phase in solving the LS problem is to update the desired response using

a series of Householder transformations to obtain vector c :

 53

(1)
1

(2)
2

(3)
3

1 2 1
()

()

()
()
()

()
()

()

d

d

d

dn n
n

d n

n
d m

F
F
F

c H H H H F
F

F

θ
θ
θ

θ
θ

θ

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

L M

M

 (65)

which is then partitioned to
1

2

c
c

c
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

 according to (58).

 The third phase includes the solution of the system

1

2
11

n

c
c

R w c

c

⎡ ⎤
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎣ ⎦

M
 (66)

by back substitution where 1R defined by (52) and (53) is an upper triangular n n×

matrix containing the first n rows of () ()H
nD θ :

(1) (1) (1) (1)
11 12 13 1

(2) (2) (2)
22 23 2

(3) (3)
1 33 3

()

0
0

0 0 0

n

n

n

n
nn

a a a a
a a a

R a a

a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L

L

M L

M M M O M

L

 . (67)

The thn node needs to solve the last equation of the system

 ()n
nn n na w c= (68)

and immediately computes its weight nw for beamforming. The (1)thn − node needs to

solve the (1)thn − equation in order to find its weight 1nw − :

(1) (1)
1, 1 1 1, 1

n n
n n n n n n na w a w c− −
− − − − −+ = . (69)

 54

The (1)
1, 1

n
n na −
− − data element of matrix 1R in (67) is constructed by the (1)thn − node by

applying all transformations 1H to 1nH − to the initial element 1 1sin
1, 1

n nj x
n na e β θ− −
− − = since

this data element belongs to its own (1)thn − column. However, it needs the value (1)
1,

n
n na −
− ,

which is in the thn column; thus, it depends on the position nx of the thn node. It also

needs to receive the weight nw and compute the value 1nc − . The thn node broadcasts its

position nx and its weight nw to all nodes. Now, the (1)thn − node can solve (69) and

calculate the weight 1nw − .

 Similarly, the (1)thn − node broadcasts its position 1nx − and its weight 1nw − to all

the other nodes, which need this information to solve their own equation. For example,

the (2)thn − node has to solve the equation

(2) (2) (2)
2, 2 2 2, 1 1 2, 2

n n n
n n n n n n n n n na w a w a w c− − −
− − − − − − − −+ + = , (70)

so it needs the positions nx and 1nx − in order to construct the (2)
2, 1

n
n na −
− − and (2)

2,
n

n na −
− elements,

respectively, by applying all the Householder transformations up to 2nH − . It also needs

the weights 1nw − and nw from the previous nodes.

 The final result is that every node obtains its own weight, and the sensor network

is now ready to cooperate in order to form an antenna array. The third phase of the

algorithm is depicted in Figure 18. During the 1st step the last node (3rd), calculates its

own weight 3w and broadcasts it along with its position 3x . In the 2nd step the 2nd node

uses the received information to solve for its weight 2w . Then it broadcasts 2w and its

position 2x . The procedure goes on until the 1st node calculates its own weight 1w

 55

Figure 18. Last phase of the algorithm to implement distributed back substitution by

the sensor nodes. Bolded and underlined ,i ix w above the nodes denote the
positions and weights that are already stored in the sensor. Simple ,i ix w denote
the broadcast position and just computed weight.

4. Computational and Communication Cost Analysis

The computational cost of the procedure presented in the previous section can be

measured in number of instructions needed for the implementation. It is known that the

number of flops for the solution of the LS problem in a central processor is given by [28]

2 22 (3)iN n m n mn n= − + + (71)

where the first term is for the determination of the QR factorization, the second term for

the update of the desired response vector with the Householder transformations, and the

last term accounts for the back substitution to solve for the weights.

 The significant characteristic of the proposed distributed algorithm is that, as

described before, no redundant computations are made. The Householder transformations

are calculated in exactly the same way as the centralized approach, which yields the same

 56

number of computations. In the centralized approach, however, each element of the

distributed stored steering matrix () ()H
nD θ , or similarly the upper triangular matrix 1R of

(67), is computed by a single sensor and no redundant computations are made. For

example, in the distributed approach, the first node does not construct the entire matrix.

In the first phase, it uses only the first column for defining the first Householder matrix

1H , and then in the back substitution phase it calculates only the first row of the 1R using

the 1H . Similarly, the second node calculates 2H using the second column and updates

the second row, which is used for the back substitution. The following matrix shows the

elements of 1R with respect to the node that uses and calculates them:

1

1 1 1 1
0 2 2 2

0 3 3

0 0 0

R

n

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L

L

M L

M M M O M

L

 (72)

Therefore, no additional computations are made, and the total processing cost is exactly

equal to that of the centralized approach given in (71). Thus, without any increase, the

processing load is shared among the nodes, and the cluster head is relieved from the

heavy computational effort.

 The number of instructions iN can be used to express the processing power using

the definitions of Chapter II for computational cost. Therefore, from (19) and (71), the

processing power pP is given by

2 22 (3)p i i iP N P n m n mn n P⎡ ⎤= × = − + + ×⎣ ⎦ . (73)

 However, this distribution of the processing load comes with a tradeoff, which is

an increase in the communication load. Note that throughout this work the

communication cost is only the number of data elements that need to be transmitted for

the implementation of an algorithm. The transmissions required for the coordination of

the sensors in the distributed algorithm are not taken into account for the calculation of

the communication cost. In the centralized approach, the cluster head collects all position

 57

data from n nodes and sends back n weights, so the number of transmitted data

elements tN is equal to

 2tN n= . (74)

 On the other hand, in the distributed algorithm, the number of transmitted data

elements is calculated as follows. The first node sends the 1H matrix, or equivalently the

1m × vector 1v and the scalar 1β , a total of 1m + data elements. Similarly, the second

node broadcasts the matrix 2H or the (1) 1m − × vector 2v and the scalar 2β , a total of

m data elements. This procedure is continued until the (1)thn − node, which transmits

the 1nH − . In general, an arbitrary node i transmits the matrix iH , i.e., (1)m i− +

elements for iv and one for iβ . The total number of transmitted elements by all nodes for

the first phase of the QR decomposition is given by

1

1

(1)(1 2) (2)(1) (2 / 2)(1)
2

n

QR
i

n nC m m n m n n
−

=

−
= − + = + − − = + − −∑ . (75)

 For the phase of the back substitution, the thn node transmits its position and its

weight, a total of two elements. Similarly, each node except the first one, broadcasts its

position and weight to the other nodes. Thus, the total number transmitted elements for

the back substitution is given by

 2(1)BSC n= − . (76)

Finally, the total number of data elements to be broadcast during the implementation of

the algorithm is

(4 / 2)(1)QR BSC C C m n n= + = + − − . (77)

 Using again the definitions from Chapter II for the communication power, the

power consumption due to communication can be derived. Assuming that each element is

represented by b bits, the number of transmitted bits is

 58

tbN C b= × (78)

and from (18) the communication power cP is given by

(4 / 2)(1)c tb tb tbP N P m n n P b= × = + − − × × . (79)

Therefore, the total power for the implementation of the algorithm is the sum of (73) and

(79)

 2 22 (3) (4 / 2)(1)i tbP n m n mn n P m n n P b⎡ ⎤= − + + × + + − − × ×⎣ ⎦ (80)

and depends highly on the specific characteristics iP , tbP andb of the sensors. Similarly,

the total power for the centralized implementation is calculated to be

2 22 (3) 2i tbP n m n mn n P n P b⎡ ⎤= − + + × + × ×⎣ ⎦ . (81)

The following figures summarize the results and compare the two implementations.

In Figure 19, the number of required instructions iN is plotted as a function of the

number of approximation points m for a 10 1× array of sensors while in Figure 20, iN is

plotted as a function of the number of sensors n , for 20m = approximation points. The

plots for the processing power pP can be obtained by multiplying the number of

instructions with iP as in (73). Another important point is that the main processing effort

happens during the QR decomposition phase as the back substitution procedure is not so

demanding. This is significant because the QR decomposition is computed once and then

the results are kept for future modifications. For example, if a new array response is

required, it is only necessary to compute the updated vector 1c of (65) and then solve the

system of (66) by back substitution; 1R does not change. Therefore, in the case of

communication with a UAV, which is moving and causing the desired response to change

continuously, the sensor array only has to quickly perform the back substitution phase in

order to compute the new weights.

 59

10 15 20 25 30 35 40 45
102

103

104

Number of angles in beampattern approximation

N
um

be
r o

f i
ns

tru
ct

io
ns Total

QR decomposition
Update and Back Substitution

Figure 19. Processing cost of the distributed algorithm as a function of the number of

approximation angles and for 10n = sensors. Multiplying iN by iP gives the
required processing power.

5 10 15 20
102

103

104

105

Number of sensors

N
um

be
r o

f i
ns

tru
ct

io
ns

Total
QR decomposition
Update and Back Substitution

Figure 20. Processing cost of the distributed algorithm as a function of the number of

sensors and for fixed number of approximation angles 20m = . Multiplying iN
by iP gives the required processing power.

 60

The communication cost as a function of the number of approximation points and

the number of sensors is depicted in Figures 21 and 22, respectively. Figure 21 shows the

communication cost for a 10 1× sensor array in terms of the transmitted elements.

Assuming that each data element is represented by 32b = bits in a single precision

floating point representation, the total transmission power can be found by multiplying

the number of elements C by tbP b× as in (78) and (79). Similarly, in Figure 22, the

number of transmitted elements C is plotted as a function of the number of sensors n

for 20m = . Compared to the centralized approach, the communication load is increased,

especially due to the first phase of the QR decomposition. However, as described before

for the processing load, this phase has to be implemented only once. Therefore, any

change in the desired response needs only the back substitution phase, which requires a

considerably lower number of elements to be transmitted.

10 15 20 25 30 35 40 45
101

102

103

Number of angles in beampattern approximation

N
um

be
r o

f d
at

a
el

em
en

ts
 tr

an
sm

itt
ed

Total
QR decomposition
Update and Back Substitution
Centralized approach

Figure 21. Communication cost of the distributed algorithm as a function of the

number of approximation angles and for a fixed number of sensors (10n =).
Multiplying the number of data elements with tbP b× gives the required
transmission power.

 61

5 10 15 20
100

101

102

103

Number of sensors

N
um

be
r o

f d
at

a
el

em
en

ts
 tr

an
sm

itt
ed

Total
QR decomposition
Update and Back Substitution
Centralized approach

Figure 22. Communication cost of the distributed algorithm as a function of the

number of sensors and for fixed number of approximation angles (20m =).
Multiplying the number of data elements with tbP b× gives the required
transmission power.

In Figures 23 and 24, the total power consumption as a function of the number of

approximation points and the number of sensors, respectively, is plotted. Assuming that

iP is equal to one unit of power, and using the ratio tpη , the factor tbP can be substituted

by tb tp iP Pη= × . Dividing the total power P of (80) by iP yields the normalized power

nP in terms of the required units of power iP :

2 22 (3) (4 / 2)(1)n tp
i

PP n m n mn n m n n b
P

η⎡ ⎤= = − + + + + − − × ×⎣ ⎦ (82)

From the figures, it is obvious that the distributed algorithm requires more power

than the centralized one, and this is caused by the additional communication load.

However, this total power cost is shared among the nodes of the sensor network and is

not undertaken by a single node. For example, Figure 24 shows that a deployment of

twenty sensors needs about five times more power for the distributed approach than the

 62

centralized approach. Therefore, the cluster head in a sensor node consumes four times

more power in the centralized scheme than the average sensor nodes consume in the

distributed one. This obviously will cause the cluster head to fail quickly, which means

that a new cluster head will need to be selected and all the computations from the

beginning will need to be re-done. Thus, the increase in the power consumption in the

distributed approach can be considered reasonable if the robustness of the network is a

crucial requirement.

10 15 20 25 30105

106

107

Number of angles in beampattern approximation

Po
w

er
 (n

um
be

r o
f P

i)

Distributed approach
Centralized approach

Figure 23. Normalized power nP (number of iP) for both distributed and centralized
approaches as a function of the number of approximation angles for a fixed
number of sensors (20n =). tpη is assumed to be 200 and 32b = bits.

 63

5 10 15 20104

105

106

107

Number of sensors

Po
w

er
 (n

um
be

r o
f P

i)

Distributed approach
Centralized approach

Figure 24. Normalized power nP (number of iP) for both distributed and centralized

approaches as a function of the number of sensors for a fixed number of
approximation angles (20m =). tpη is assumed to be 200 and 32b = .

B. DISTRIBUTED ITERATIVE SCHEME FOR SOLVING THE LEAST
SQUARE PROBLEM

In this selection, a distributed scheme based on an iterative solution of the LS

problem is presented and evaluated. The iterative procedure is performed in steps by all

the nodes in the sensor array. Starting from an arbitrary initialization for the weights, this

method quickly converges to the actual solution of the LS problem.

For the implementation of the algorithm, the following assumptions are made:

a) Each node can calculate its position from a reference node accurately.

b) Each node can broadcast information to other nodes in the cluster.

c) The desired array response for a set of directions 1,..., mθ θ of the incoming

signal is known.

 64

d) Errors due to noise during the communication among the nodes are not taken

into account.

The linear system of (31), which is to be solved in the LS sense, is considered a

minimization problem of the following form:

 2min
x

Ax bε = − (83)

where

 ()HA D θ≡

x w≡ (84)

 ()db F θ≡ .

1. Proposed Algorithm

The algorithm is based on various parallel methods proposed in the literature for

solving the LS problem [30], [31], [32], [33].

Let A be an m n× matrix while x and b are 1n × and 1m× vectors,

respectively. Each column of A is denoted iA and each scalar element of vector x is

denoted ix , for 1, ,i n= K . Then, the LS problem has the equivalent form

2
1 21 2min n nx

A x A x A x bε = + + + −K . (85)

 Suppose that ()kx is an approximation to the solution x∗ after k iterations and its

elements are ()k
ix , for 1, ,i n= K . Considering an arbitrary element ix , all elements

1 1, ix x −K are updated in 1k + iterations while the rest ,i nx xK are updated in k

iterations. Now, (85) can be written as

(1)

2
1

(1) (1) ()

1 1
min

k
i

i n
k k k

j i jj i j
x j j i

A x A x A x bε
+

−
+ +

= = +

= + + −∑ ∑ (86)

 65

for the (1)thk + iteration of (1) ,k
ix + which gives the local solution for (1)k

ix + . The

argument of the term on the right hand side of (86) can be written as

1
(1) (1) ()

1 1

1
(1) () (1) ()

1

()

i n
k k k

j i jj i j
j j i

i n
k k k k

i j ji i j j
j j i

A x A x A x b

A x x A x A x b

−
+ +

= = +

−
+ +

= =

+ + − =

− + + −

∑ ∑

∑ ∑
 . (87)

By substituting ()k
is as the step or correction

 () (1) ()k k k
i i is x x+= − (88)

and (, 1)k ir − as the residual

1

(, 1) (1) ()

1

i n
k i k k

j jj j
j j i

r A x A x b
−

− +

= =

= + −∑ ∑ (89)

into (86) yields

()

2(, 1)()min
k

i

k ik
i i

s
A s rε −= + . (90)

Thus, the global problem of finding the solution for 1, , nx xK in (85) is equivalent

to solving the subproblems of (90), which can be assigned to the corresponding sensor

nodes. Indeed, iA is known locally to the sensor node ,i ()k
is is the locally computed

correction, and (, 1)k ir − is the residual after the 1thi − node has completed its update ()
1

k
ix − .

The residual (, 1)k ir − is not locally available in the node ;i however, it can be transmitted

by the 1thi − sensor node. After the t hi node calculates the new solution ()k
ix , it sends

the updated residual (,)k ir to the other nodes. The residual can be shown to satisfy the

recursive equation [30]

(,) (, 1) ()k i k i k
i ir r A s−= + (91)

 whereas the new approximate solution is

(1) () ()k k k
i i ix x s+ = + . (92)

 66

 Therefore, the t hi node is assigned a column iA of the matrix A and assumes an

initial solution (0)
ix . Assuming that (0) ,r the initial estimation for the residual is available,

the t hi node solves (90) for (1)
is and then updates its solution (1)

ix by (92). Following

this step, the updated residual (1,)ir is sent to the 1thi + node in order to update its solution
(1)

1ix + . The procedure continues until a convergence criterion is satisfied. This series of

approximations converge to the solution x∗ , and the norm of the residual decreases

continuously [30], [31]. This procedure is summarized in Figure 25.

Figure 25. Procedure for the distributed iterative solution of the LS problem (After

Ref. [30]).

This algorithm is highly distributed, and it can be implemented in a sensor

network in order to spread the computational effort equally among all participating sensor

nodes.

a) Divide A into its columns iA , for 1, , ,i n= K and assign one to each node i .

b) Initialize (0)
ix , for 1, , ,i n= K and (0)r .

c) For 1k = until convergence

For 1, ,i n= K

Solve for ()k
is :

()

2(, 1)()min
k

i

k ik
i is

A s r −+ .

Update the residual : (,) (, 1) ()k i k i k
i ir r A s−= + .

Send the updated residual to all nodes.

Update the solution (1) () ()k k k
i i ix x s+ = + .

 Check for convergence.

 67

From the notation of (84), the matrix A is the steering matrix ()HD θ , each

column iA is the thi column of ()HD θ , and ix is the weight coefficient iw . From (61),

each column of ()HD θ depends only on the position of the node and the set of

approximation points. This column is available locally to the sensor node. Starting from

an initial estimation for the residual (0)r , the first node can solve (90) for (1)
1s and update

its own weight (1)
1w by (92). Then, it can update the residual (1,1)r and send it to the next

node. However, since the residual is an 1m × vector, each transmission of the residual

needs the transmission of m elements, which is a considerable amount of communication

load. Another approach for the transmission of the residual seems more efficient. Assume

that all sensors’ positions are initially broadcast to all sensor nodes so that each node

knows the position of each other node; in this way, they can construct any of the columns

of the steering matrix. Then the thi sensor node does not need to send the entire residual
(,)k ir but only the scalar correction ()k

is , and all other nodes can reconstruct the residual

by repeating the (91). For example, the second node is not required to send the residual
(,2)kr but just the scalar correction ()

2
ks , and then the third node will reconstruct the

residual by computing (91):

(,2) (,1) ()
2 2

k k kr r A s= + . (93)

Therefore, in each iteration step, only one scalar element has to be broadcast, and

the rest of the computations are performed locally. This distributed determination of the

weights in a sensor network is summarized in Figure 26.

 68

Figure 26. Procedure for the proposed distributed iterative solution of the LS problem
in a WSN environment.

2. Computational and Communication Costs

The performance of the distributed iterative procedure for the computation of the

weights in a random sensor array is shown in Figures 27 and 28. In Figure 27, the

residual norm is plotted for each local iteration for a 10 1× array of sensors. It is obvious

that the residual norm converges to the actual residual after about thirty local iterations or

about three complete iterations; one complete iteration is finished when all ten nodes

perform a local iteration. Similar results are plotted in Figure 28 where the norm of the

a) All nodes broadcast their position; each node can construct all columns

iD , for 1, ,i n= K , of ()HD θ .

b) Initialize (0)
iw , 1, ,i n= K and (0)r .

c) For 1k = until convergence

For 1, ,i n= K

 Receive ()
1

k
is − from 1i − node.

 Reconstruct the residual: (, 1) (, 2) ()
1 1

k i k i k
i ir r D s− −
− −= + .

Solve for ()k
is :

()

2(, 1)()min
k

i

k ik
i is

D s r −+ .

Update the residual: (,) (, 1) ()k i k i k
i ir r D s−= + .

Send the only the correction ()k
is to all nodes.

Update the solution (1) () ()k k k
i i iw w s+ = + .

 Check for convergence.

 69

error ()e k between the approximate ()kw and the actual solution w∗ calculated after

each complete iteration k is

2()() ke k w w∗= − . (94)

0 10 20 30 40 502

3

4

5

6

7

8

9

10

Number of local iterations

R
es

id
ua

l N
or

m

Residual norm after approximation
Residual norm for actual solution

Figure 27. Convergence of the residual norm to the actual residual, indicating that the

algorithm converges to the real solution. After 3 complete iterations (30 local) the
residual has converged.

 70

1 2 3 4 5 610-3

10-2

10-1

100

Number of complete iterations

N
or

m
 o

f t
he

 e
rr

or
 b

et
w

ee
n

ap
pr

ox
im

at
e

an
d

ac
tu

al
 w

ei
gh

ts

Figure 28. Convergence of the norm of the error ()e k between the approximate ()kw
and actual solution w∗ calculated after each complete iteration k , indicating that
the algorithm converges to the real solution.

The computational cost can be measured in terms of the number of instructions

needed for the implementation. Assuming that each node solves its local LS problem with

a QR factorization obtained by Householder transformations, the cost per sensor psN is

given by (71), which for 1n = yields

2(1 3) 1psN m m= − + + . (95)

Note that the last two terms stand for the backsubstitution, so they are performed in each

iteration, thus (95) becomes

2(1 3) (1)psN m k m= − + + . (96)

Furthermore, each node has to reconstruct the 1m × residual vector, so an additional

number of 2m instructions are needed. Finally, the number of instructions per sensor

results in

 71

2(1 3) (3 1)psN m k m= − + + . (97)

Therefore, the total processing cost for all the nodes iN is equal to

 []2(1 3) (3 1)i psN n N n m k m= × = − + + (98)

while the total processing power is

[]2(1 3) (3 1)p i i iP N P n m k m P= × = − + + × . (99)

Using the above equation, the processing cost in number of instructions for the

implementation of the algorithm is plotted as a function of the number of sensors n , the

number of approximation angles ,m and the number of iterations k . In Figure 29, the

number of instructions for the distributed approach become fewer than the centralized

approach after a certain point, which is 15m = ; the simulation scenario is for a 10 1×

array of sensors and the cost has been computed for 5k = iterations. Similarly, in Figure

30, the processing cost for the centralized approach grows larger than the distributed

approach as the number of the sensors increase (20m = and 5k =).

 72

10 15 20 25 301500

2000

2500

3000

3500

4000

4500

5000

5500

6000

Number of angles in beampattern approximation

N
um

be
r o

f i
ns

tru
ct

io
ns

Distributed approach
Centralized approach

Figure 29. Processing cost of the distributed algorithm as a function of the number of

approximation angles for 10n = sensors and 5k = iterations. Multiplying the
number of instructions by iP gives the required processing power.

5 10 15 20103

104

105

Number of sensors

N
um

be
r o

f i
ns

tru
ct

io
ns

Distributed approach
Centralized approach

Figure 30. Processing cost of the distributed algorithm as a function of the number of

sensors for 20m = approximation angles and 5k = iterations. Multiplying the
number of instructions by iP gives the required processing power.

 73

1 2 3 4 5 6 7 81000

1500

2000

2500

3000

3500

4000

4500

5000

5500

Number of iterations

N
um

be
r o

f i
ns

tru
ct

io
ns

Distributed approach
Centralized approach

Figure 31. Processing cost of the distributed algorithm as a function of the number of

iterations for 10n = sensors and 20m = approximation angles. Multiplying the
number of instructions by iP gives the required processing power.

Finally, Figure 31 shows the increase of the processing cost with the number of

iterations, which indicates that the cost for the distributed approach grows higher than the

cost for the centralized one after a specific number of iterations (5k = in this case); a

10 1× sensor array is deployed and twenty approximation points are used.

The communication cost for the distributed approach can be derived as follows.

Initially, each node broadcasts its own position, so a total of n data elements are

transmitted. Then, after a local iteration step is finished, the scalar correction ()k
is has to

be sent, so for k complete iterations, kn elements are transmitted. Therefore, the number

of transmitted elements is

(1)C k n= + (100)

and it does not depend on the number of approximation angles m . Assuming that each

element is represented by b bits, the total transmission power cP is given by

 74

(1)c tb tbP C P B k n P b= × × = + × × . (101)

 In Figure 32, the communication cost is plotted as a function of the number of

sensors. The increased communication load for the distributed approach is a reasonable

tradeoff considering that this distributed approach relieves the central processing node

from the entire computational load. Similarly, Figure 33 shows the effect of the number

of iterations on the communication cost. Obviously, the speed of convergence positively

affects the reduction of the transmitted elements.

 The total power for the implementation of the algorithm is the sum of the

processing power given by (99) and the transmission power given by (101):

[]2(1 3) (3 1) (1)i tbP n m k m P k n P b= − + + × + + × × (102)

Considering the ratio tpη and substituting tbP from (21), the normalized power nP

as a number of required units of power iP is given by

[]2(1 3) (3 1) (1)n i tp
i

PP n m k m P k n b
P

η= = − + + × + + × × . (103)

 75

5 10 15 20
101

102

103

Number of sensors

N
um

be
r o

f d
at

a
el

em
en

ts
 tr

an
sm

itt
ed

Distributed approach
Centralized approach

Figure 32. Communication Cost of the distributed algorithm as a function of the

number of sensors for 20m = approximation angles and 5k = iterations.
Multiplying the number of data elements with tbP b× gives the required
transmission power.

1 2 3 4 5 6 7 8

20

30

40

50

60

70

80

Number of iterations

N
um

be
r o

f d
at

a
el

em
en

ts
 tr

an
sm

itt
ed

Distributed approach
Centralized approach

Figure 33. Communication cost of the distributed algorithm as a function of the

number of iterations for 10n = sensors and 20m = approximation angles.
Multiplying the number of data elements with tbP b× gives the required
transmission power.

 76

In Figures 34-36, the total normalized power needed for the implementation of the

algorithm is plotted as a function of the number of approximation angles, the number of

sensors and the number of iterations, respectively. In all cases, the power consumption of

the distributed algorithm is larger than that of the centralized approach. However, the

important characteristic, as in the previous algorithm, is that the total amount of power is

shared among the nodes; consequently, the cluster head is relieved of the computational

burden. For instance, in Figure 35, where 20m = and 5k = , the power for the distributed

approach is almost three times larger than the centralized approach, but this is shared by

20n = nodes. Thus, the average power consumption of an arbitrary node in the

distributed network is six times less compared to the cluster head’s consumption in the

centralized architecture. In a centralized approach, there is a considerably higher

possibility that the cluster head will exhaust its limited battery and then the beamforming

problem will have to be computed from scratch. In summary, the increased power

consumption is reasonable enough to consider the distributed approach a viable solution

if robustness is required in the network.

10 15 20 25 301

1.5

2

2.5

3

3.5

4 x 105

Number of angles in beampattern approximation

Po
w

er
 (n

um
be

r o
f P

i)

Distributed approach
Centralized approach

Figure 34. Normalized power nP (number of iP) for both distributed and centralized

approaches as a function of the number of approximation angles for
10n = sensors and 5k = iterations. tpη is assumed to be 200 and 32b = bits.

 77

5 10 15 20104

105

106

Number of sensors

Po
w

er
 (n

um
be

r o
f P

i)

Distributed approach
Centralized approach

Figure 35. Normalized power nP (number of iP) for both distributed and centralized

approaches as a function of the number of sensors for 20m = approximation
points and 5k = iterations. tpη is assumed to be 200 and 32b = bits.

1 2 3 4 5 6 7 81

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6 x 105

Number of iterations

Po
w

er
 (n

um
be

r o
f P

i)

Distributed approach
Centralized approach

Figure 36. Normalized power nP (number of iP) for both distributed and centralized

approaches as a function of the number iterations for 10n = sensors and
20m = approximation points. tpη is assumed to be 200 and 32b = bits.

 78

C. SUMMARY

In this chapter, two distributed approaches were proposed for the solution of the

LS problem of the array weight computation. The presented algorithms were evaluated in

terms of the processing cost, the communication cost and the total power consumption

and then compared to the centralized implementation.

In the first approach (distributed QR decomposition), the processing cost is the

same as in the centralized approach, but there is a tradeoff of increased communication

effort. However, only the first phase of the algorithm is power demanding, and potential

modifications to the desired response do not require much power for the recalculation of

the weights.

In the second approach (iterative solution), there is rapid convergence to the

actual solution, which yields a reduction of the processing cost if the number of iterations

is kept low. The simulation results show that only 3 or 4 iterations are needed for the

convergence of the algorithm, which results in considerably lower processing power.

However, the communication cost is still higher when compared to the centralized

approach.

To sum it up, these two approaches require significantly lower average power per

sensor node by efficiently sharing the power consumption among the nodes.

 79

V. CONCLUSIONS

The operational scenario adopted in this work assumes that a number of sensor

nodes are randomly deployed in an area of interest in order to collect information about

various kinds of objects. The acquired data has to be collected by an oveflying UAV;

however, single sensors do not have sufficient power capabilities in order to establish

communication with the UAV. Therefore, they are organized into clusters and cooperate

in order to function as an array of sensor nodes.

The effect of position errors on the performance of the random sensor array was

analyzed, and the need for beamforming techniques which effectively mitigate that effect

was discussed. Since reliability and robustness in a sensor network environment are

crucial, two distributed algorithms for beamforming that efficiently manage to share the

processing load among the sensor nodes, compared to centralized approaches which

assign the entire effort to a single node, were presented. A simulation model was created

and implemented in the MATLAB environment to evaluate the performance of the

proposed algorithms.

A. SIGNIFICANT RESULTS

The simulations showed that the sidelobes in the array response increase as a

function of the “randomness” of the sensor array. Thus, as the mean deviation from the

uniform array was increased, the average sidelobe magnitudes also increased. These

results validate the theoretical results of random arrays found in the literature. Another

important point is that for the LS beamformer, a subset of approximation points can yield

almost the same solution as larger sets. This offers significant reduction to the required

processing and transmission power, which are crucial in sensor networks.

Based on the performance analysis, the two proposed distributed algorithms can

effectively share the processing load among the nodes. The first, a distributed

implementation of the QR decomposition, has the same processing cost as the centralized

one. The second approach, based on an iterative method of computing the weight vector

 80

in the LS sense, converges quickly to the actual solution and achieves reduction of the

total processing cost compared to that of the centralized one.

 For both algorithms, the tradeoff is the increased transmission power, causing an

overall increase in the total power consumption in the network. This total power,

however, is shared among the sensor nodes; therefore, the average power needed by a

sensor node in the distributed implementation is lower than the power needed by the

cluster head in the centralized approach. Consequently, the network’s susceptibility to

failures due to excessive power consumption is greatly reduced.

B. FUTURE WORK

Throughout this work, several assumptions were made, such as the nodes can

compute their positions without errors, and the communication between them is not

affected by noise. A future effort may examine the effect of these errors on the

computation of the weight vector and consequently on the array performance.

In this work, the set of approximation points were selected based on uniform

sampling, but there are other choices, such as using a non-uniform grid, which may

require fewer points with similar performance. Initial results showed that certain

approximation points, which have the physical meaning of direction angles, may be more

important for the approximation of the desired response than others. These issues may be

further investigated in a future study.

The topology of WSN changes dynamically due to frequent additions and

withdrawals of sensor nodes; some of them may switch in or off sleep mode and some

other may fail because of the harsh environmental conditions or because of exhausted

battery. For these scenarios, the processing and communication cost for the update of the

weight vectors can be investigated. Also for the distributed algorithms, there is no need to

solve the beamforming problem from scratch; if the array topology changes, it is

important to analyze the effects on the costs and consequently the power needed for

modifying the weight vector after a node has added or withdrawn from the array.

 81

In this work, the emphasis was given to the data independent beamforming

techniques, such as the LS approximation of the desired response. There are many proven

data dependent techniques for which the weight vector can be determined adaptively

[11], [12] and a distributed implementation of these methods could be examined.

An array of M elements can be used to form a beampattern with exactly 1M −

narrowband nulls. These nulls can be placed towards the directions of incoming

interferences in order to suppress them. Since there are straightforward polynomial based

techniques for placing those nulls where desired in the array space, it would be

interesting to investigate them in a future work.

Finally, the communication cost was defined as a function of the data elements

that need to be transmitted for the implementation of the algorithms. However, there is

also a networking cost which consists of parameters such as the packet overhead and the

retransmissions due to collisions and errors, which all add to the power consumption.

Since the implementation of a distributed beamforming algorithm may be prohibitive by

a high networking cost, it will be interesting to investigate the effect of the networking

cost to the overall power consumption.

 82

THIS PAGE INTENTIONALLY LEFT BLANK

 83

APPENDIX. MATLAB SOURCE CODE

This appendix lists all MATLAB programs used in this work

• Array2D.m :

%%% Filename: Array2D.m
%%% Author: Nikolaos Papalexidis
%%% Hellenic Air Force
%%% Date: June 2007
%%% Description: This file generates the array beampattern for an
%%% array with randomly positioned elements
%%% The weights are computed using the LS approach of
%%% the desired response

clear all
close all
clc

%%
%%%%%%%%%%%%%% PARAMETERS %%%%%%%%%%%%%%%
%%
global c f l b Im Nx Ny
c=3e8;
f=2e9;
l=c/f;
b=2*pi/l;

GdBavg=zeros(181,181);
GdBerravg=zeros(181,181);
GdBerrlinavg=zeros(181,181);
GdBrefavg=zeros(181,181);
GdBlsavg=zeros(181,181);
GdBLSavg=zeros(181,181);
GdBiteravg=zeros(181,181,16);

GdBLS1avg=zeros(181,181);
GdBLS2avg=zeros(181,181);
GdBLS3avg=zeros(181,181);
GdBLS4avg=zeros(181,181);
GdBLS5avg=zeros(181,181);

wwls=[];
wwnu=[];
WW1=[];
WW2=[];
WW3=[];
WW4=[];
WW5=[];

 84

%%
%%%%%%%%%%% END OF PARAMETERS %%%%%%%%%%%
%%

%%
%%%%%%%%% INPUT CHOICES %%%%%%%%%%%%%%%
%%

P=inputparameters;

Nx=P(1); % Nx number of array elements in x direction
Ny=P(2); % Ny number of array elements in y direction

XG=P(3); % Generation of position (1):Deviation from perfect
linear, (2): From scratch
xe=P(4); % Percentage of position error (with respect to
perfect linear) in x direction (%)
 xe=xe/100;
ye=P(5); % Percentage of position error (with respect to
perfect linear) in y direction (%)
 ye=ye/100;

xest=P(6); % Percentage of estimated position error (with respect
to actual) in x direction (%)
 xest=xest/100;
yest=P(7); % Percentage of estimated position error (with respect
to actual) in y direction (%)
 yest=yest/100;

theta0=P(8); % Elevation angle theta (degrees)
 theta0=theta0*pi/180;
phi0=P(9); % Azimuth angle phi (degrees)
 phi0=phi0*pi/180;
phi_ang=P(10); % Angle phi for beampattern

te=P(11); % Angle error in theta (+- degrees)
pe=P(12); %('Angle error in phi (+-degrees)

NumIter=P(13); %Number of iterations (for average beampattern)

%%%
%%%%%%%%%%%%% END OF INPUT CHOICES %%%%%%%%%%%
%%%

%%%
%%%%%%%% POSITION GENERATION %%%%%%%%%%%%%
%%%

 85

%%%%%%%%% Uniform array (reference) %%%%%%%%%%

dx=l/2; % ideal distance lamda/2 in x-direction
xn=(0:Nx-1)*dx;
xn=repmat(xn',1,Ny);
xn=reshape(xn,Nx*Ny,1);

dy=l/2; % ideal distance lamda/2 in y-direction
yn=(0:Ny-1)*dy;
yn=repmat(yn,Nx,1);
yn=reshape(yn,Nx*Ny,1);

%%%%%%%%% End of uniform array %%%%%%%%%%%

for NI=1:NumIter;

 %%%%%%%% DISTANCE DEVIATION %%%%%%%%%

 if XG==1;
 devx=xe*l*(rand(Nx*Ny,1)-0.5); % Random deviation from xe%
-lamda/2 to xe% lamda/2
 x=xn+devx; % Real positions in x-direction

 devy=ye*l*(rand(Nx*Ny,1)-0.5); % Random deviation from -
lamda/2 to lamda/2
 y=yn+devy; % Real positions in x-direction

 elseif XG==2;% 2nd option - Firstly construct x,y and then
assume linear
 [x,y]=rand_inter_dist(Nx,Ny);
 end

 %%%% Move reference node to the axes center %%%%%%%

 x=x-x(1); %
 y=y-y(1); %

%%%%%% Estimated position with defined error %%%%%%%

xerr=x.*(1+xest*(2*rand(Nx*Ny,1)-1)); % error position in x-
direction with respect to actual
yerr=y.*(1+yest*(2*rand(Nx*Ny,1)-1)); % error position in y-
direction with respect to actual

%%%%%% End of Estimated position with defined error %%%%%%

 %%%%%%%% END OF DISTANCE DEVIATION %%%%%%%%%%%

 86

%%
%%%%%%%%%%%%%%%%%%%%% WEIGHTS %%%%%%%%%%%%%%%%%%%%%%
%%

 %%% Amplitudes %%%

Im=ones(Nx*Ny,1); % Amplitudes

wm=weights2(x,y,theta0,phi0); % correct weights
wmerr=weights2(xerr,yerr,theta0,phi0); % wrong weights, deviation
from actual position : xe%
wmerrlin=weights2(xn,yn,theta0,phi0); % wrong weights, assume
perfect linear
wref=weights2(xn,yn,theta0,phi0); % Reference weights (uniform array)

%%
%%%%%%%%%%%%%%%%% END OF WEIGHTS %%%%%%%%%%%%%%%%%%%%%%
%%

%%
%%%%%%%%%%%%%%%%% GAIN %%%%%%%%%%%%%%%%%%%%
%%

G=gain2D(wm,x,y); % Gain from correct weights
Gerr=gain2D(wmerr,x,y); % Gain from wrong weights, deviation from
actual position
Gerrlin=gain2D(wmerrlin,x,y); % Gain from wrong weights, assumed
perfect linear
Gref=gain2D(wref,xn,yn);

%%%%%%%% Gain (dB) %%%%%%%%%%%

GdB=10*log10(G/max(max(G))); % Gain from correct weights (dB)
GdBerr=10*log10(Gerr/max(max(G))); % Gain from wrong weigths,
deviation from actual position (dB)
GdBerrlin=10*log10(Gerrlin/max(max(G))); % Gain from wrong weights,
assumed perfect linear (dB)
GdBref=10*log10(Gref/max(max(G))); % Gain for reference (uniform
array)

%%
%%%%%%%%%%%% END OF GAIN %%%%%%%%%%%%%
%%

 87

%%%
%%%
%%%%%%%% LS ESTIMATION OF THE WEIGHTS, GIVEN DESIRED RESPONSE
%%%%%%%%%%%
%%%
%%%
 theta=-90:90;
 th=theta*pi/180;

 dn=exp(j*b*(xn*sin(th)*cos(phi0)+yn*sin(th)*sin(phi0))); %
steering vector for ULA

 Fdes=wref'*dn;

 d=exp(j*b*(x*sin(th)*cos(phi0)+y*sin(th)*sin(phi0))); %
steering vector

 ww=Fdes/d;
 ww=ww'; % or ww=inv(d*d')*d*Fdes';

 wwls=[wwls ww];

 Gls=gain2D(ww,x,y);
 GdBls=10*log10(Gls/max(max(G)));

 th0=P(8);

 %%%%%%% LS with fewer approximation points %%%%

 %% Uniform spacing %%

 %% (1) %%
 dt=2;
 r1a=th0:-dt:-90;
 r1a=flipdim(r1a,2);
 r1b=th0+dt:dt:90;
 r1=[r1a r1b];

 t1=r1*pi/180;

 DN1=exp(j*b*(xn*sin(t1)*cos(phi0)+yn*sin(t1)*sin(phi0)));

 FDES1=wref'*DN1;

 D1=exp(j*b*(x*sin(t1)*cos(phi0)+y*sin(t1)*sin(phi0)));

 ww1=FDES1/D1;
 ww1=ww1';

 WW1=[WW1 ww1];

 88

 GLS1=gain2D(ww1,x,y);
 GdBLS1=10*log10(GLS1/max(max(G)));

 %% (2) %%
 dt=4;
 r2a=th0:-dt:-90;
 r2a=flipdim(r2a,2);
 r2b=th0+dt:dt:90;
 r2=[r2a r2b];

 t2=r2*pi/180;

 DN2=exp(j*b*(xn*sin(t2)*cos(phi0)+yn*sin(t2)*sin(phi0)));

 FDES2=wref'*DN2;

 D2=exp(j*b*(x*sin(t2)*cos(phi0)+y*sin(t2)*sin(phi0)));

 ww2=FDES2/D2;
 ww2=ww2';

 WW2=[WW2 ww2];

 GLS2=gain2D(ww2,x,y);
 GdBLS2=10*log10(GLS2/max(max(G)));

 %% (3) %%
 dt=6;
 r3a=th0:-dt:-90;
 r3a=flipdim(r3a,2);
 r3b=th0+dt:dt:90;
 r3=[r3a r3b];

 t3=r3*pi/180;

 DN3=exp(j*b*(xn*sin(t3)*cos(phi0)+yn*sin(t3)*sin(phi0)));

 FDES3=wref'*DN3;

 D3=exp(j*b*(x*sin(t3)*cos(phi0)+y*sin(t3)*sin(phi0)));

 ww3=FDES3/D3;
 ww3=ww3';

 WW3=[WW3 ww3];

 GLS3=gain2D(ww3,x,y);
 GdBLS3=10*log10(GLS3/max(max(G)));

 89

 %% (4) %%
 dt=8;
 r4a=th0:-dt:-90;
 r4a=flipdim(r4a,2);
 r4b=th0+dt:dt:90;
 r4=[r4a r4b];

 t4=r4*pi/180;

 DN4=exp(j*b*(xn*sin(t4)*cos(phi0)+yn*sin(t4)*sin(phi0)));

 FDES4=wref'*DN4;

 D4=exp(j*b*(x*sin(t4)*cos(phi0)+y*sin(t4)*sin(phi0)));

 ww4=FDES4/D4;
 ww4=ww4';

 WW4=[WW4 ww4];

 GLS4=gain2D(ww4,x,y);
 GdBLS4=10*log10(GLS4/max(max(G)));

 %% (5) %%
 dt=10;
 r5a=th0:-dt:-90;
 r5a=flipdim(r5a,2);
 r5b=th0+dt:dt:90;
 r5=[r5a r5b];

 t5=r5*pi/180;

 DN5=exp(j*b*(xn*sin(t5)*cos(phi0)+yn*sin(t5)*sin(phi0)));

 FDES5=wref'*DN5;

 D5=exp(j*b*(x*sin(t5)*cos(phi0)+y*sin(t5)*sin(phi0)));

 ww5=FDES5/D5;
 ww5=ww5';

 WW5=[WW5 ww5];

 GLS5=gain2D(ww5,x,y);
 GdBLS5=10*log10(GLS5/max(max(G)));

 %%% Non uniform %%%%
 theta1=th0-12:4:th0+12;
 theta2=-90:15:90;

 90

 ft=(theta2<th0-12)|(theta2>th0+12);
 thetaf=[theta1 theta2(ft)];
 THETA=sort(thetaf);

 TH=THETA*pi/180;

 DN=exp(j*b*(xn*sin(TH)*cos(phi0)+yn*sin(TH)*sin(phi0)));

 FDES=wref'*DN;

 D=exp(j*b*(x*sin(TH)*cos(phi0)+y*sin(TH)*sin(phi0)));

 WW=FDES/D;
 WW=WW';

 wwnu=[wwnu WW];

 GLS=gain2D(WW,x,y);
 GdBLS=10*log10(GLS/max(max(G)));

%%%
%%%%%%%%%%%%%%%%%%% END OF LS %%%%%%%%%%%%%%%%%%%%%%
%%%

%%%%%%%%%%%%% PLOTS %%%%%%%%%%%%%

figure(10);

plot(xn,yn,'o')
hold on;
plot(x,y,'rx')
hold on;
plot(xerr,yerr,'mp')
grid on
axis equal
title('Fig.1 Sensor array','Fontsize',12);
legend('Perfect linear','Actual Position','Wrongly estimated');

figure(20);
plot(theta,GdB(:,phi_ang+90+1),'Linewidth',2);
hold on;
plot(theta,GdBerr(:,phi_ang+90+1),'r-.','Linewidth',2);
hold on;
plot(theta,GdBerrlin(:,phi_ang+90+1),'m:','Linewidth',2);
hold on;
plot(theta,GdBref(:,phi_ang+90+1),'g-','Linewidth',2);
hold on;
plot(theta,GdBls(:,phi_ang+90+1),'c-','Linewidth',2);
axis([-85 85 -50 5]);
grid on
title('Fig.2 : Beampattern for N linear array elements and given
\phi','Fontsize',12);

 91

xlabel('\theta (degrees)','Fontsize',12);
ylabel('Power Gain (dB),' ,'Fontsize',12);
legend('Correct','Wrongly estimated','Assumed perfect linear','Ideal
linear','LS weights');

GdBavg=GdBavg+GdB;
GdBerravg=GdBerravg+GdBerr;
GdBerrlinavg=GdBerrlinavg+GdBerrlin;
GdBrefavg=GdBrefavg+GdBref;
GdBlsavg=GdBlsavg+GdBls;
GdBLSavg=GdBLSavg+GdBLS;

GdBLS1avg=GdBLS1avg+GdBLS1;
GdBLS2avg=GdBLS2avg+GdBLS2;
GdBLS3avg=GdBLS3avg+GdBLS3;
GdBLS4avg=GdBLS4avg+GdBLS4;
GdBLS5avg=GdBLS5avg+GdBLS5;

end %%%%% End of loop for iterated computations (average Gain)
%%%%%%%

GdBavg=GdBavg/NumIter;
GdBerravg=GdBerravg/NumIter;
GdBerrlinavg=GdBerrlinavg/NumIter;
GdBrefavg=GdBrefavg/NumIter;
GdBlsavg=GdBlsavg/NumIter;
GdBLSavg=GdBLSavg/NumIter;

GdBLS1avg=GdBLS1avg/NumIter;
GdBLS2avg=GdBLS2avg/NumIter;
GdBLS3avg=GdBLS3avg/NumIter;
GdBLS4avg=GdBLS4avg/NumIter;
GdBLS5avg=GdBLS5avg/NumIter;

figure(30);
theta=-90:90;
plot(theta,GdBavg(:,phi_ang+90+1),'Linewidth',2);
hold on;
plot(theta,GdBerravg(:,phi_ang+90+1),'r-.','Linewidth',2);
hold on;
plot(theta,GdBerrlinavg(:,phi_ang+90+1),'m:','Linewidth',2);
hold on;
plot(theta,GdBrefavg(:,phi_ang+90+1),'g-','Linewidth',2);
hold on;
plot(theta,GdBlsavg(:,phi_ang+90+1),'c-','Linewidth',2);
grid on
legend('Correct','Wrongly estimated','Assumed perfect linear','Ideal
linear','LS weights');
axis([-85 85 -50 5]);
title('Fig.3 : Average Beampattern for N linear array elements and
given \phi','Fontsize',12);
xlabel('\theta (degrees)','Fontsize',12);
ylabel('Power Gain (dB),' ,'Fontsize',12);

 92

figure(40);
theta=-90:90;
plot(theta,GdBavg(:,phi_ang+90+1),'Linewidth',2);
hold on;
plot(theta,GdBerravg(:,phi_ang+90+1),'r-.','Linewidth',2);
hold on;
plot(theta,GdBrefavg(:,phi_ang+90+1),'g-','Linewidth',2);
hold on;
plot(theta,GdBlsavg(:,phi_ang+90+1),'c-','Linewidth',2);
axis([-85 85 -50 5]);
title('Fig.4 : Average Beampattern for N linear array
elements','Fontsize',12);
xlabel('\theta (degrees)','Fontsize',12);
ylabel('Power Gain (dB),' ,'Fontsize',12);
grid on
legend('Correct','Wrongly estimated','Ideal linear','LS weights');

figure(50);
theta=-90:90;
plot(theta,GdBavg(:,phi_ang+90+1),'Linewidth',2);
hold on;
plot(theta,GdBrefavg(:,phi_ang+90+1),'g-','Linewidth',2);
hold on;
plot(theta,GdBlsavg(:,phi_ang+90+1),'c-','Linewidth',2);
hold on;
plot(theta,GdBLSavg(:,phi_ang+90+1),'k:','Linewidth',2);
axis([-85 85 -50 5]);
title('Fig.5 : Average Beampattern for N linear array
elements','Fontsize',12);
xlabel('\theta (degrees)','Fontsize',12);
ylabel('Power Gain (dB),' ,'Fontsize',12);
grid on
legend('Correct','Ideal linear','LS weights','LS less constraints');

 93

• Array2D.m :

%%% Filename: InputParameters.m
%%% Author: Nikolaos Papalexidis
%%% Hellenic Air Force
%%% Date: June 2007
%%% Description: This function creates a GUI for defining the
%%% characteristics of a random array

function answer=inputparameters;

prompt={'Give Nx number of array elements in x direction:',...
 'Give Ny number of array elements in y direction:',...
 'Generation of position: (1):Deviation from perfect linear,(2):
From scratch',...
 'Position error (with respect to perfect linear) in x direction
(%)',...
 'Position error (with respect to perfect linear) in y direction
(%)',...
 'Estimated position error (with respect to actual) in x
direction (%)',...
 'Estimated position error (with respect to actual) in y
direction (%)',...
 'Elevation angle (theta) (degrees):',...
 'Azimuth angle (phi) (degrees):',...
 'Angle phi for beampattern:',...
 'Angle error in theta (+- degrees)',...
 'Angle error in phi (+-degrees)',...
 'Number of iterations',};

name='Parameters for antenna array';
numlines=1;
defaultanswer={'10','1','1','20','20','0','0','30','45','45','0','0','2
5'};

answer=inputdlg(prompt,name,numlines,defaultanswer);

for i=1:length(answer);
 temp(i)=str2num(answer{i});
end

answer=temp;

 94

• Gain2D.m :

%%% Filename: Gain2D.m
%%% Author: Nikolaos Papalexidis
%%% Hellenic Air Force
%%% Date: June 2007
%%% Description: This function calculates the beampattern gain of
%%% an array

function Gain=gain2(wm,xm,ym);

global b

for theta=-90:90;
 for phi=-90:90;
 th=theta*pi/180;
 ph=phi*pi/180;

F(90+theta+1,90+phi+1)=sum(sum(conj(wm).*exp(j*b*(xm*sin(th)*cos(ph)+ym
*sin(th)*sin(ph)))));
 end
end

Gain=abs(F).^2;

 95

• weights2.m :

%%% Filename: weights2.m
%%% Author: Nikolaos Papalexidis
%%% Hellenic Air Force
%%% Date: June 2007
%%% Description: This function calculates the weights for a
uniform
%%% array

function w=weights2(xm,ym,Theta,Phi);

global Im b

w=Im.*exp(j*b*(xm*sin(Theta)*cos(Phi)+ym*sin(Theta)*sin(Phi))); %
weights

 96

• rand_inter_dist.m :

%%% Filename: rand_inter_dist.m
%%% Author: Nikolaos Papalexidis
%%% Hellenic Air Force
%%% Date: June 2007
%%% Description: This function creates a random array. the
deviations
%%% from the ideal array follow a uniform
distribution

function [xx,yy]=rand_inter_dist(Nx,Ny);

global l

Ny=Ny+1; % First line will be ignored
Nx=Nx+1;

xx=zeros(Ny,Nx);
yy=zeros(Ny,Nx);

for i=1:Ny;
 for j=1:Nx;
 if j==1
 xx(i,j)=0;
 else
 xx(i,j)=xx(i,j-1)+(rand*l/2+l/4);
 end

 if i==1;
 yy(i,j)=0;
 else
 yy(i,j)=yy(i-1,j)+(rand*l/2+l/4);
 end
 end
end

if Ny~=1
 xx1=xx(2:Ny,2:Nx);
 yy1=yy(2:Ny,2:Nx);
end

xx1=reshape(xx1,(Nx-1)*(Ny-1),1); % ignore first line
yy1=reshape(yy1,(Nx-1)*(Ny-1),1);

xx=xx1;
yy=yy1;

 97

• CostAnalysis.m :

%%% Filename: CostAnalysis.m
%%% Author: Nikolaos Papalexidis
%%% Hellenic Air Force
%%% Date: June 2007
%%% Description: This file is used for the calculation of the
%%% processing and communication costs and the
%%% power consumption for the
%%% centralized,the distributed QR decomposition
%%% and the iterative approach.

clear all
close all
clc

N=10; % Number of sensors
M=10:30; % Number of angles

%% Reference
%% Computational Cost
Comp_ref=2*N^2*(M-N/3)+M*N+N^2;
Com_ref1=2*N;

%%
%%%%%%%%%%%%%%% Distributed QR decomposition %%%%%%%%%%%%%%%%
%%

%% COMPUTATIONAL COST
%% Number of Operations)
%% Note that there is no distinguish between the type of operations
%% like additions or multiplications

% A matrix (M x N)
% b vector (M x 1)
% QR decomposition : Cqr=2*N^2*(M-N/3)
% Update : Cu=M*N
% Back Substitution: Cb=N^2

Cqr=2*N^2*(M-N/3);
Cu=M*N;
Cb=N^2;
Cub=Cu+Cb;

Comp1=Cqr+Cub;

figure(1);
semilogy(M,Comp1,'bo-',M,Cqr,'rp-.',M,Cub,'md--','Linewidth',1.5);

 98

title('Fig.1 : Computational Cost as a function of M ,
(N=10)','Fontsize',12);
xlabel('Number of angles in beampattern approximation','Fontsize',12);
ylabel('Number of instructions','Fontsize',12);
legend('Total','QR decomposition','Update and Back Substitution');
grid on;

M=20;
N=5:20;
Cqr=2*N.^2.*(M-N/3);
Cu=M*N;
Cb=N.^2;
Cub=Cu+Cb;

Comp2=Cqr+Cub;

figure(2);
semilogy(N,Comp2,'bo-',N,Cqr,'rp-.',N,Cub,'md--','Linewidth',1.5);
title('Fig.1 : Computational Cost as a function of M ,
(N=10)','Fontsize',12);
xlabel('Number of sensors','Fontsize',12);
ylabel('Number of instructions','Fontsize',12);
legend('Total','QR decomposition','Update and Back Substitution');
grid on;

%% COMMUNICATION COST
%% Defined as the number of data values we need to send (broadcasting)
%% Not the number of packets

% 1st pass : From 1st sensor to the last (QR decomposition) :
% Cqr=(M+4-N/2)*(N-1)
% 2nd pass : Back substitution phase
% Cbs=2*(N-1)

N=10; % Number of sensors
M=10:30; % Number of angles

Comm_qr=(M+2-N/2)*(N-1);
Comm_bs=2*(N-1);

Com1=Comm_qr+Comm_bs;

figure(10);
semilogy(M,Com1,'bo-',M,Comm_qr,'rp-
.',M,ones(length(M),1)*Comm_bs,'md:',M,ones(length(M),1)*Com_ref1,'gs-
.','Linewidth',1.5);
title('Fig.3 :Communication Cost as a function of M ,
(N=10)','Fontsize',12);
xlabel('Number of angles in beampattern approximation','Fontsize',12);
ylabel('Number of elements transmitted','Fontsize',12);

 99

legend('Total','QR decomposition ','Update and Back
Substitution','Centralized approach');
grid on;

M=20;
N=5:20;
Com_ref2=2*N;

Comm_qr=(M+2-N/2).*(N-1);
Comm_bs=2*(N-1);

Com2=Comm_qr+Comm_bs;

figure(11);
semilogy(N,Com2,'bo-',N,Comm_qr,'rp-.',N,Comm_bs,'md:',N,Com_ref2,'gs-
.','Linewidth',1.5);
title('Fig.4 :Communication Cost as a function of N ,
(M=20)','Fontsize',12);
xlabel('Number of sensors','Fontsize',12);
ylabel('Number of elements transmitted','Fontsize',12);
legend('Total','QR decomposition ','Update and Back
Substitution','Centralized approach');
grid on;

%%% Power analysis
Ntp=200;
Pi=1;
Ptb=Ntp*Pi;
B=32;

% total Power

% vs M
P1=Comp1*Pi+Com1*B*Ptb;
Pref1=Comp1*Pi+Com_ref1*B*Ptb;

N=10; % Number of sensors
M=10:30; % Number of angles

figure(20);
semilogy(M,P1,'bo-',M,Pref1,'rp:','Linewidth',1.5);
title('Fig.20 :Power analysis as a function of M ,
(N=10)','Fontsize',12);
xlabel('Number of angles in beampattern approximation','Fontsize',12);
ylabel('Power (number of Pi)','Fontsize',12);
legend('Distributed approach','Centralized approach');
grid on;

% vs N
P2=Comp2*Pi+Com2*B*Ptb;

 100

Pref2=Comp2*Pi+Com_ref2*B*Ptb;

M=20;
N=5:20;

figure(25);
semilogy(N,P2,'bo-',N,Pref2,'rp:','Linewidth',1.5);
title('Fig.25 :Power analysis as a function of N ,
(M=20)','Fontsize',12);
xlabel('Number of sensors','Fontsize',12);
ylabel('Power (number of Pi)','Fontsize',12);
legend('Distributed approach','Centralized approach');
grid on;

%%
%%%%%%%%%%%%%%% Iterative Approach %%%%%%%%%%%%%%%%%%%
%%

N=10; % Number of sensors
M=10:30; % Number of angles
K=5;

CP1=N*(2*(M-1/3)+K*(3*M+1));

figure(30);
semilogy(M,CP1,'bo-',M,Comp1,'rp:','Linewidth',1.5);
title('Fig.30 :Computational Cost as a function of M ,
(N=10,K=5)','Fontsize',12);
xlabel('Number of angles in beampattern approximation','Fontsize',12);
ylabel('Number of instructions','Fontsize',12);
legend('Distributed approach','Centralized approach');
grid on;

M=20;
N=5:20;
K=4;

CP2=N*(2*(M-1/3)+K*(3*M+1));

figure(35);
semilogy(N,CP2,'bo-',N,Comp2,'rp:','Linewidth',1.5);
title('Fig.35 :Computational Cost as a function of N ,
(M=20)','Fontsize',12);
xlabel('Number of sensors','Fontsize',12);
ylabel('Number of instructions','Fontsize',12);
legend('Distributed approach','Centralized approach');

 101

grid on;

M=20;
N=10;
K=1:8;

CP3=N*(2*(M-1/3)+K*(3*M+1));
Cref=2*N^2*(M-N/3)+M*N+N^2;

figure(40);
semilogy(K,CP3,'bo-',K,Cref*ones(length(K),1),'rp:','Linewidth',1.5);
title('Fig.40 :Computational Cost as a function of iterations K ,
(N=10,M=20)','Fontsize',12);
xlabel('Number of iterations','Fontsize',12);
ylabel('Number of instructions','Fontsize',12);
legend('Distributed approach','Centralized approach');
grid on;

N=10; % Number of sensors
M=10:30; % Number of angles
K=5;
ComPar1=(K+1)*N;

figure(50)

M=20;
N=5:20;
K=5;

ComPar2=(K+1)*N;

semilogy(N,ComPar2,'bo-',N,Com_ref2,'rp:','Linewidth',1.5);
title('Fig.50 :Communication Cost as a function of N ,
(M=20,K=5)','Fontsize',12);
xlabel('Number of sensors','Fontsize',12);
ylabel('Number of elements transmitted','Fontsize',12);
legend('Distributed approach','Centralized approach');
grid on;

figure(60);

M=20;
N=10;
K=1:8;

ComPar3=(K+1)*N;
Com_ref3=2*N;

 102

semilogy(K,ComPar3,'bo-
',K,ones(length(K),1)*Com_ref3,'rp:','Linewidth',1.5);
title('Fig.60 :Communication Cost as a function of K ,
(N=10,M=20)','Fontsize',12);
xlabel('Number of iterations','Fontsize',12);
ylabel('Number of elements transmitted','Fontsize',12);
legend('Distributed approach','Centralized approach');
grid on;

%%% Power Analysis
Ntp=200;
Pi=1;
Ptb=Ntp*Pi;
B=32;

N=10; % Number of sensors
M=10:30; % Number of angles
K=4;

Par1=CP1*Pi+ComPar1*B*Ptb;
Pref1=Comp1*Pi+Com_ref1*B*Ptb;

figure(70);
plot(M,Par1,'bo-',M,Pref1,'rp:','Linewidth',1.5);
title('Fig.70 :Power analysis as a function of M ,
(N=10)','Fontsize',12);
xlabel('Number of angles in beampattern approximation','Fontsize',12);
ylabel('Power (number of Pi)','Fontsize',12);
legend('Distributed approach','Centralized approach');
grid on;

M=20;
N=5:20;
K=4;

Par2=CP2*Pi+ComPar2*B*Ptb;
Pref2=Comp2*Pi+Com_ref2*B*Ptb;

figure(80);
semilogy(N,Par2,'bo-',N,Pref2,'rp:','Linewidth',1.5);
title('Fig.80 :Power analysis as a function of N ,
(M=20)','Fontsize',12);
xlabel('Number of sensors','Fontsize',12);
ylabel('Power (number of Pi)','Fontsize',12);
legend('Distributed approach','Centralized approach');
grid on;

M=20;
N=10;

 103

K=1:8;

Par3=CP3*Pi+ComPar3*B*Ptb;

Cqr=2*N.^2.*(M-N/3);
Cu=M*N;
Cb=N.^2;
Cub=Cu+Cb;

Comp3=Cqr+Cub;

Pref3=Comp3*Pi+Com_ref3*B*Ptb;

figure(90);
plot(K,Par3,'bo-',K,ones(length(K),1)*Pref3,'rp:','Linewidth',1.5);
title('Fig.90 :Power analysis as a function of K ,
(M=20)','Fontsize',12);
xlabel('Number of iterations','Fontsize',12);
ylabel('Power (number of Pi)','Fontsize',12);
legend('Distributed approach','Centralized approach');
grid on;

 104

• Iterative.m :

%%% Filename: Iterative.m
%%% Author: Nikolaos Papalexidis
%%% Hellenic Air Force
%%% Date: June 2007
%%% Description: This file is used for the implementation of the
%%% distributed iterative solution of the LS problem

xpos=x;
ypos=y;

A=D5';
q=FDES5';
[M,N]=size(A);

clear z1 z2 z3 z4 z5 z6 z7 z8 zz n e

Z1=[];
Z2=[];
Z3=[];
Z4=[];
Z5=[];
Z6=[];
Z7=[];
Z8=[];

z1=0;
z2=0;
z3=0;
z4=0;
z5=0;
z6=0;
z7=0;
z8=0;

A1=A(:,1);
A2=A(:,2);
A3=A(:,3);
A4=A(:,4);
A5=A(:,5);
A6=A(:,6);
A7=A(:,7);
A8=A(:,8);

zz1=zeros(N,1);
zz1(1)=z1;
zz2=zeros(N,1);
zz2(2)=z2;
zz3=zeros(N,1);
zz3(3)=z3;
zz4=zeros(N,1);

 105

zz4(4)=z4;
zz5=zeros(N,1);
zz5(5)=z5;
zz6=zeros(N,1);
zz6(6)=z6;
zz7=zeros(N,1);
zz7(7)=z7;
zz8=zeros(N,1);
zz8(8)=z8;

s1=0;
s2=0;
s3=0;
s4=0;
s5=0;
s6=0;
s7=0;
s8=0;

zz=zz1+zz2+zz3+zz4+zz5+zz6+zz7+zz8;

r0=A*zz(:,1)-q;
Niter=6; % Number of iterations
r=zeros(M,Niter*N); % residual
r(:,1)=r0;
rhat=r0;
z=A\q;

for k=1:Niter;
 m=(k-1)*8+1;

 s1=-A1\rhat;
 rhat=rhat+A1*s1;
 r(:,m+1)=rhat;
 z1=z1+s1;
 Z1=[Z1 z1];

 s2=-A2\rhat;
 rhat=rhat+A2*s2;
 r(:,m+2)=rhat;
 z2=z2+s2;
 Z2=[Z2 z2];

 s3=-A3\rhat;
 rhat=rhat+A3*s3;
 r(:,m+3)=rhat;
 z3=z3+s3;
 Z3=[Z3 z3];

 s4=-A4\rhat;
 rhat=rhat+A4*s4;
 r(:,m+4)=rhat;
 z4=z4+s4;
 Z4=[Z4 z4];

 106

 s5=-A5\rhat;
 rhat=rhat+A5*s5;
 r(:,m+5)=rhat;
 z5=z5+s5;
 Z5=[Z5 z5];;

 s6=-A6\rhat;
 rhat=rhat+A6*s6;
 r(:,m+6)=rhat;
 z6=z6+s6;
 Z6=[Z6 z6];

 s7=-A7\rhat;
 rhat=rhat+A7*s7;
 r(:,m+7)=rhat;
 z7=z7+s7;
 Z7=[Z7 z7];

 s8=-A8\rhat;
 rhat=rhat+A8*s8;
 r(:,m+8)=rhat;
 z8=z8+s8;
 Z8=[Z8 z8];

 zz(:,k)=[z1;z2;z3;z4;z5;z6;z7;z8];
end

for i=1:Niter*N+1;
 n(i)=norm(r(:,i));
end

R=norm(A*z-q);

figure(1);
t1=1:length(Z1);
N1=length(t1);

subplot(3,3,1);
plot(t1,ones(N1,1)*real(z(1)),'r-',t1,real(Z1),'b-.');
title('Real of w_1','Fontsize',12);
grid on;

subplot(3,3,2);
plot(t1,ones(N1,1)*real(z(2)),'r-',t1,real(Z2),'b-.');
title('Real of w_2','Fontsize',12);
grid on;

subplot(3,3,3);
plot(t1,ones(N1,1)*real(z(3)),'r-',t1,real(Z3),'b-.');
title('Real of w_3','Fontsize',12);
grid on;

 107

subplot(3,3,4);
plot(t1,ones(N1,1)*real(z(4)),'r-',t1,real(Z4),'b-.');
title('Real of w_4','Fontsize',12);
grid on;

subplot(3,3,5);
plot(t1,ones(N1,1)*real(z(5)),'r-',t1,real(Z5),'b-.');
title('Real of w_5','Fontsize',12);
grid on;

subplot(3,3,6);
plot(t1,ones(N1,1)*real(z(6)),'r-',t1,real(Z6),'b-.');
title('Real of w_6','Fontsize',12);
grid on;

subplot(3,3,7);
plot(t1,ones(N1,1)*real(z(7)),'r-',t1,real(Z7),'b-.');
title('Real of w_7','Fontsize',12);
grid on;

subplot(3,3,8);
plot(t1,ones(N1,1)*real(z(8)),'r-',t1,real(Z8),'b-.');
title('Real of w_8','Fontsize',12);
grid on;

subplot(3,3,9);
plot(n);
hold on;
plot(ones(Niter*N+1,1)*R,'r-');
title('Residual Norm','Fontsize',12);
grid on;

figure(2);
t1=1:length(Z1);
N1=length(t1);

subplot(3,3,1);
plot(t1,ones(N1,1)*imag(z(1)),'r-',t1,imag(Z1),'b-.');
title('Imaginary of w_1','Fontsize',12);
grid on;

subplot(3,3,2);
plot(t1,ones(N1,1)*imag(z(2)),'r-',t1,imag(Z2),'b-.');
title('Imaginary of w_2','Fontsize',12);
grid on;

subplot(3,3,3);
plot(t1,ones(N1,1)*imag(z(3)),'r-',t1,imag(Z3),'b-.');
title('Imaginary of w_3','Fontsize',12);
grid on;

 108

subplot(3,3,4);
plot(t1,ones(N1,1)*imag(z(4)),'r-',t1,imag(Z4),'b-.');
title('Imaginary of w_4','Fontsize',12);
grid on;

subplot(3,3,5);
plot(t1,ones(N1,1)*imag(z(5)),'r-',t1,imag(Z5),'b-.');
title('Imaginary of w_5','Fontsize',12);
grid on;

subplot(3,3,6);
plot(t1,ones(N1,1)*imag(z(6)),'r-',t1,imag(Z6),'b-.');
title('Imaginary of w_6','Fontsize',12);
grid on;

subplot(3,3,7);
plot(t1,ones(N1,1)*imag(z(7)),'r-',t1,imag(Z7),'b-.');
title('Imaginary of w_7','Fontsize',12);
grid on;

subplot(3,3,8);
plot(t1,ones(N1,1)*imag(z(8)),'r-',t1,imag(Z8),'b-.');
title('Imaginary of w_8','Fontsize',12);
grid on;

subplot(3,3,9);
plot(n);
hold on;
plot(ones(Niter*N+1,1)*R,'r-');
title('Residual Norm','Fontsize',12);
grid on;

figure(3);
t1=1:length(Z1);
N1=length(t1);

subplot(3,3,1);
plot(t1,ones(N1,1)*abs(z(1)),'r-',t1,abs(Z1),'b-.');
title('Magnitude of w_1','Fontsize',12);
grid on;

subplot(3,3,2);
plot(t1,ones(N1,1)*abs(z(2)),'r-',t1,abs(Z2),'b-.');
title('Magnitude of w_2','Fontsize',12);
grid on;

subplot(3,3,3);
plot(t1,ones(N1,1)*abs(z(3)),'r-',t1,abs(Z3),'b-.');
title('Magnitude of w_3','Fontsize',12);
grid on;

 109

subplot(3,3,4);
plot(t1,ones(N1,1)*abs(z(4)),'r-',t1,abs(Z4),'b-.');
title('Magnitude of w_4','Fontsize',12);
grid on;

subplot(3,3,5);
plot(t1,ones(N1,1)*abs(z(5)),'r-',t1,abs(Z5),'b-.');
title('Magnitude of w_5','Fontsize',12);
grid on;

subplot(3,3,6);
plot(t1,ones(N1,1)*abs(z(6)),'r-',t1,abs(Z6),'b-.');
title('Magnitude of w_6','Fontsize',12);
grid on;

subplot(3,3,7);
plot(t1,ones(N1,1)*abs(z(7)),'r-',t1,abs(Z7),'b-.');
title('Magnitude of w_7','Fontsize',12);
grid on;

subplot(3,3,8);
plot(t1,ones(N1,1)*abs(z(8)),'r-',t1,abs(Z8),'b-.');
title('Magnitude of w_8','Fontsize',12);
grid on;

subplot(3,3,9);
plot(n);
hold on;
plot(ones(Niter*N+1,1)*R,'r-');
title('Residual Norm','Fontsize',12);
grid on;

figure(4);
semilogy(n,'bo-');
hold on;
semilogy(ones(Niter*N+1,1)*R,'rp-');
title('Residual Norm','Fontsize',12);
xlabel('Number of local iterations','Fontsize',12);
ylabel('Residual Norm','Fontsize',12);
grid on;

figure(5);

for i=1:Niter;
 ztemp=[Z1(i);Z2(i);Z3(i);Z4(i);Z5(i);Z6(i);Z7(i);Z8(i)];
 e(i)=norm(z-ztemp);
end

figure(6)
semilogy(e,'bo-');
title('Norm of the weight error','Fontsize',12);

 110

xlabel('Number of complete iterations','Fontsize',12);
ylabel('Norm of the error between approximate and actual
weights','Fontsize',12);
grid on;

 111

LIST OF REFERENCES

[1] I.F. Akyildiz, et al., “A Survey on Sensor Networks,” IEEE Communications
Magazine, Vol.40, No.8, pp. 102-114, August 2002.

[2] D.E. Culler and W. Hong, “Wireless Sensor Networks,” Communications of the
ACM, Vol.47, No.6, pp. 30-33, June 2004.

[3] Q. Zhao, A. Swami and L. Tong, “The Interplay Between Signal Processing and
Networking in Sensor Networks,” IEEE Signal Processing Magazine, Vol.23,
No.4, pp. 84-93, July 2006.

[4] J.J. Xiao, et al., “Distributed Compression-Estimation Using Wireless Sensor
Networks,” IEEE Signal Processing Magazine, Vol.23, No.4, pp. 27-41, July
2006.

[5] I. Stojmenovic, “Handbook of Sensor Networks: Algorithms and Architectures ,”
John Wiley & Sons, Hoboken, NJ, 2005.

[6] C.S. Raghavendra, Krishna M. Sivalingam and T. Znati, “Wireless Sensor
Networks,” Kluwer Academic Publishers, Norwell, MA, 2004.

[7] D.E. Culler, D. Estrin and M. Srivastava, “Overview of Sensor Networks,”
Computer, Vol.37, No.8, pp. 41-49, August 2004.

[8] L.C. Godara, “Application of Antenna Arrays to Mobile Communications, Part II:
Beam-forming and Direction-of-Arrival Considerations,” Proceedings of the
IEEE, Vol.85, No.8, pp. 1195-1245, August 1997.

[9] W. L. Stutzman and G.A. Thiele., Antenna Theory and Design, John Wiley &
Sons, New York, 1998.

[10] L.C. Godara, “Handbook of antennas in Wireless Communications,” CRC Press,
Boca Raton, FL 33431, 2002.

[11] B.D. Van Veen, and K.M. Buckley, “Beamforming: A Versatile Approach to
Spatial Filtering”, IEEE ASSP Magazine, pp. 4-24, April 1988.

[12] S. Haykin, “Adaptive Filter Theory,” Prentice Hall, Upper Saddle River, NJ,
2002.

[13] T. Biedka, “Analysis and Development of Blind Adaptive Algorithms,” Ph.D.
dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VA,
October 2001.

 112

[14] D.G. Manolakis, Ingle V.K. and Kogon, S.M., “Statistical and Adaptive Signal
Processing,” Artech House, Norwood, MA, 2005.

[15] S. Stergiopoulos, “Advanced Signal Processing Handbook : Theory and
Implementation for Radar, Sonar and Medical Imaging Real-Time Systems,” CRC
Press, Boca Raton, FL 33431, 2001.

[16] L.C. Godara, “Smart antennas,” CRC Press, Boca Raton, FL 33431, 2004.

[17] P.J. Vincent, M. Tummala, and J. McEachen, “A New Method for Distributing
Power Usage across a Sensor Network,” Proceedings of the 3rd Annual IEEE
Communication Society on Sensor and Ad Hoc Communications and Networks,
SECON ’06, pp. 518-526, September 2006.

[18] P.J. Vincent, M. Tummala and J. McEachen, “Optimizing the Size of an Antenna
Array,” Proceedings of the 40th Asilomar Conference on Signals, Systems and
Computers, pp. 2281-2284, October 2006.

[19] J. Litva, and T.K.Y. Lo, Digital Beamforming in Wireless Communications,
Artech House, Norwood, MA, 1996.

[20] B.D. Steinberg, Principles of Aperture and Array System Design, including
Random and Adaptive Arrays, John Wiley & Sons, New York, 1976.

[21] B.D. Steiberg, “The Peak Sidelobe of the Phased Array Having Randomly
Located Elements,” IEEE Transactions on Antennas and Propagation, Vol. AP-
20, No.2, pp. 129-136, March 1972.

[22] H. Ochiai, et al., “Collaborative Beamforming for Distributed Wireless Ad Hoc
Sensor Networks,” IEEE Transactions on Signal Processing, Vol.53, No.11, pp.
4110-4124, November 2005.

[23] Reichenbach Frank, et al., “A Distributed Linear Least Squares Method for
Precise Localization with Low Complexity in Wireless Sensor Networks”,
Proceedings of 2nd IEEE International Conference, DCOSS, San Francisco, CA,
pp. 514 -528, June 2006.

[24] C. Gkionis, “Topology and Positioning of Wireless Sensor Network,” Master’s

Thesis, Naval Postgraduate School, Monterey, CA, June 2007.

[25] P.J. Vincent, M. Tummala and J. McEachen, “An Energy-Efficient Approach for
Information Transfer from Distributed Wireless Sensor Systems,” Proceedings of
the 2006 IEEE/SMC International Conference on System of Systems Engineering,
Los Angeles, CA, pp. 100-105, April 2006

[26] J.C. Chen, K. Yao, and R.E. Hudson, “Source Localization and Beamforming,”
IEEE Signal Processing Magazine, pp. 30-39, March 2002.

 113

[27] V. Raghunathan, et al., “Energy-Aware Wireless Microsensor Networks,” IEEE
Signal Processing Magazine, pp. 40-50, March 2002.

[28] G. Golub and C.F. Van Loan, “Matrix Computations,” The Johns Hopkins
University Press, Baltimore, MA, 1996.

[29] S.J. Leon, “Linear Algebra with Applications,” Prentice Hall, Upper Saddle River,
NJ, 2006.

[30] T. Steihaug, and Y. Yalcinkaya, “Asynchronous Methods and Least Squares: An
Example of Deteriorating Convergence,” Technical Report No. 131. Department
of Informatics, University of Bergen, Bergen, Norway, 1997.

[31] R.A. Renault, “A Parallel Multisplitting Solution of the Least Squares Problem,”
Numerical Linear Algebra with Applications, No.5, pp. 11-31, 1998.

[32] A. Berman, and R.J. Plemmons, “Cones and Iterative Methods for Best Least
Squares Solutions of Linear Systems,” SIAM Journal on Numerical Analysis,
Vol.11, No.1, pp. 145-154, March 1974.

[33] J.J. Climent and C. erea, “Iterative Methods for Least-Square Problems Based on
Proper Splittings,” Journal of Computational and Applied Mathematics, No.158,
pp. 43-48, 2003.

 [34] C.C. Wai, “Distributed Beamforming in Wireless Sensor Networks,” Master’s
Thesis, Naval Postgraduate School, Monterey, CA, December 2004.

 114

THIS PAGE INTENTIONALLY LEFT BLANK

 115

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Professor Jeffrey B. Knorr
Chairman, Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California

4. Professor Murali Tummala
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California

5. Professor Roberto Cristi
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California

6. Professor John McEeachen
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California

7. Professor Weilian Su
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California

8. Embassy of Greece, Air Attaché
 Washington,DC

9. Hellenic Air Force Academy

 Tatoi, Greece

10. Mike Niermann
SPAWAR
Charleston, South Carolina

 116

11. Martin Kruger
ONR
Arlington, Virginia

12. Bernie Schneider

SOCOM
McDill AFB, Florida

13. Jamie Carson
SRC
Charleston, South Carolina

14. George Hinckley
Virginia Advanced R&D Initiative
Quantico, Virginia

15. Richard Wylly
 SRC
 Charleston, South Carolina

